Простейшая однокомандная схема радиоуправления моделями (3 транзистора). Система радиоуправления - своими руками Схема приемника для радиоуправляемых моделей

Юный Техник Для умелых рук 1975 №5 нашем приложении № 3 за 1973 год была опубликована однокомандная аппаратура радиоуправления моделями. С тех пор в редакцию поступило много писем от читателей с просьбой повторить схему.
Редакция попросила руководителя радиокружка Дома пионеров Октябрьского района Москвы Эдуарда Афанасьевича Тарасова подготовить материал о радиоуправлении моделями.
В отличие от предыдущей конструкции данная аппаратура имеет некоторые преимущества:
1. Генератор ВЧ ее передатчика работает непрерывно. Это позволило повысить помехозащищенность аппаратуры.
2. Ее монтаж выполнен без применения фольгированного гетинакса.
3. На выходе приемника вместо довольно дефицитного электромагнитного реле используется мощный транзистор.
4. Контурные катушки выполнены на каркасах широко распространенных контуров телевизора "Рубин".

ПЕРЕДАТЧИК работает на частоте 28.2 МГц, частота модуляции примерно 2 кГц. Его принципиальная схема приведена на рисунке 1. Генератор высокой частоты собран на транзисторе T1, по схеме ёмкостной трёхточки. Его частота определяется контуром R2, С2, С4, С5. Отношение ёмкостей конденсаторов С4 и С5 определяет величину обратной связи. Связь с антенной выполнена по схеме П-контура. Это позволило упростить конструкцию передатчика и облегчить его налаживание. Величина этой связи зависит от соотношения емкости конденсатора С2 и включенных последовательно конденсаторов С4 и С5. Конденсатор С1 установлен для того, чтобы избежать срыва колебаний генератора при замыкании антенны на корпус передатчика.
Модулятор передатчика собран по схеме мультивибратора на транзисторах Т2 и Т3.

Органом управления, позволяющим включать и выключать исполнительный двигатель на модели, служит кнопка Кн1. Использовать для этой цели выключатель питания нельзя! И вот почему. Электродвигатели, установленные на модели, являются источником достаточно сильных радиопомех, особенно если учесть их близкое расположение к приёмнику.
А приемник сделан так, что его чувствительность к помехам снижается во время работы передатчика. Поэтому команды подаются включением или выключением модуляции.
Передатчик расположен в дюралюминиевом корпусе размером 110x45x150 мм.

Все детали передатчика, кроме органов управления, батарей питания и антенны, размещены на монтажной плате, сделанной из гетинакса толщиной 1,5 мм. Размеры платы 90x50 мм. Для монтажа плата расчерчивается штангенциркулем на квадраты со стороной 5 мм. В местах пересечения полученных линий для крепления деталей сверлятся отверстия диаметром 1 мм. Их размещение на монтажной плате и соединения между собой показаны на рисунке 2. Пунктирными линиями здесь обозначены соединения, сделанные с нижней стороны платы. Отверстия диаметром 4 мм, просверленные по углам, служат для крепления платы в корпусе передатчика.


Контурная катушка LI наматывается на пластмассовом каркасе диаметром 9 мм проводом ПЭВ-2 диаметром 0,51 мм. Каркас и сердечник могут быть использованы от контуров телевизора "Рубин".

Дроссель Др1 имеет индуктивность, равную примерно 8 мкГн. Можно использовать дроссель коррекции от телевизора или изготовить его самостоятельно. Для этого на резисторе МЛТ-0,5, сопротивление которого не менее 100 кОм, намотайте 90 витков провода ПЭВ-2 диаметром 0,1-0,12 мм.
Конденсаторы C1-С5 должны быть обязательно керамическими, а С6 и С7 могут быть и бумажными.
Монтажная плата разработана под резисторы МЛТ-0,5. Но могут быть использованы и резисторы МЛТ-0,125, УЛМ, ВС-0,12 и другие.
Транзистор Т1 может быть типа П403, П4І4-П416, ГТ308 с коэффициентом усиления не менее 50. А вот на месте Т2 и Т3 прекрасно работают и низкочастотные транзисторы П13-П16, МП39-МП42, но при этом коэффициент усиления у них тоже должен быть не менее 50.
Питается передатчик от двух соединенных последовательно батарей 3336Л. Если вы захотите уменьшить размеры передатчика, то используйте батареи "Крона".
Антенна передатчика имеет длину примерно 80 см и свинчивается из двух дюралевых прутков диаметром 4 мм с помощью трубочки, имеющей внутреннюю резьбу. Хорошо подходит для передатчика телескопическая антенна от транзисторного приемника.
Размещая монтажную плату в корпусе, следите, чтобы катушка L1 находилась на расстоянии не менее 8 мм от корпуса.
Правильно собранный из исправных деталей передатчик сразу начинает работать. Необходимо только проверить частоту передатчика и, если это необходимо, подстроить его сердечником катушки L1.
ПРИЁМНИК (см. рис. 3). Он собран целиком на транзисторах. Даже на выходе приёмника нет традиционного реле - его место занял мощный транзистор. Это позволило не только исключить достаточно дефицитную деталь, но и повысить надежность работы приёмника.

Его первый каскад собран по схеме сверхрегенератора с самопогашением, а высокочастотная часть этого каскада - по схеме индуктивной трёхточки. Цепочка R3, С5 определяет частоту гашения. В нашем приёмнике она равна примерно 100 кГц. Высокая частота гашения снижает коэффициент усиления каскада, ко зато позволяет отделить полезный сигнал от частоты гашения с помощью достаточно простых фильтров. Режим работы каскада устанавливается потенциометром R2.
Однокаскадный усилитель низкой частоты приёмника собран на транзисторе Т2. Сигнал на вход каскада подается через фильтр R4, Сб. Благодаря включению конденсатора C6 в цепь обратной связи его ёмкость удалось значительно снизить. С выхода УНЧ через резистор R7 сигнал подается на вход второго детектора, собранного на транзисторе Т3. Это позволило повысить входное сопротивление каскада.
Постоянная составляющая продетектированного сигнала, подаваемая на выходной транзистор Т5 через эмиттерный повторитель Т4, управляет работой исполнительного электродвигателя ЭД-1.
Для того чтобы повысить надежность работы схемы, питание приемника и электродвигателя производится от отдельных батарей.
Единственная самодельная деталь приемника - катушка L1. Она наматывается на пластмассовом каркасе диаметром 8 мм и содержит девять витков провода ПЭВ-2 диаметром 0,51 мм. Намотка производится виток к витку, а отвод делается от третьего витка. Отсчет ведется от того конца катушки, который подключен к минусовому проводу питания. Делается это так: сначала наматывают на каркас 3,5 витка и отмечают место, где должен быть сделан отвод. Затем осторожно острым ножом зачищают верхнюю поверхность провода. К зачищенному месту припаивают лужёный проводок диаметром 0,2-0,3 мм. Намотав катушку, проводок подсоединяют к соответствующему выводу. Остальные детали приемника стандартные.
Транзистор Т1 может быть типа П403, П414-П416, а Т2-Т4 - МП20Б. Коэффициент усиления транзисторов должен быть не менее 100. В качестве выходного транзистора Т5 могут быть использованы транзисторы П213-П217 с коэффициентом усиления не менее 25.
Конденсаторы, кроме электролитических, керамические. Ёмкости конденсаторов С1 и С7 могут быть увеличены до 33 нФ, а конденсатора С8, наоборот, снижена до 0,5 мкФ.
Увеличение ёмкости конденсатора С9 приводит к увеличению времени разгона и остановки двигателя.
Все постоянные резисторы типа МЛТ-0,5, но могут быть использованы и МЛТ-0,125, ВС-0,12. Подстроечный резистор R2 типа СП-3.
Конструктивно приемник смонтирован на гетинаксовой плате размером 50x120x1,5 мм. Подготовка платы приемника для монтажа производится так же, как и платы передатчика. Монтажная схема ее приведена на рисунке 4.
Настройка радиоприемника должна проводиться с подключенной антенной. Лучше всего с тон, с которой он будет работать на модели.
К эмиттеру транзистора Т1 через резистор в 20-30 кОм подключают осциллограф. Вращая ручку потенциометра R2, добиваются получения наиболее устойчивой амплитуды частоты гашения. Затем от генератора сигналов подают на вход приемника сигнал частотой 28,2 МГц, модулированный по амплитуде частотой 1000 Гц. Связь между генератором и приёмником должна быть по возможности слабой. Можно, например, расположить провод, идущий от генератора, на расстоянии 1-2 см от антенны приемника. Вращая сердечник L1, добиваются получения максимальной величины полезного сигнала. Он будет просматриваться в виде изменения амплитуды сигнала гашения.
Остальные каскады приемника настройки не требуют. Если для вращения электродвигателя ЭД-1 потребуется увеличить силу тока, замените транзистор Т5. Максимальное значение выходного тока 0,8-1А.
Э. ТАРАСОВ

Устройство предназначено для управления 12 различными нагрузками. Причем одновременно и в любой комбинации допускается нажатия до 8 кнопок (PORTB) или 4 кнопок (PORTA). Оно может входить в состав, например, радиоуправляемого комплекса для авто и авиамоделей, управления гаражными воротами и т.п.

  • Скачать файл принципиальной схемы в формате lay

Работа приемной части предусмотрена в двух режимах. Режим реального времени и с фиксацией команд (зависит от положения перемычки S на плате приемника).Если перемычка убрана, команды зафиксируются. Если перемычка установлена, команды будут выполняться только в момент удержания соответствующей кнопки (кнопок).
Индикаторы исполнения команд - светодиоды. Разумеется, к соответствующим выводам процессора можно подключить например затворы мощных полевых или базы биполярных транзисторов через токоограничивающие резисторы.

Передатчик

Передающая часть состоит из задающего генератора и усилителя мощности.
ЗГ - классическая схема на ПАВ- резонаторе со 100 % амплитудной модуляцией.
УМ- стандартный с общим эммитером, нагруженный на четвертьволновый отрезок провода длиной 16 см через согласующую емкость.
Шифратор - PIC 16F628A , он осуществляет обработку информации о нажатых кнопках кодирование и посылку пачек управляющих импульсов а также включение светодиодного индикатора и усилителя мощности во время передачи кода.

Приемник

Сверхрегенератор. При номиналах указанных на схеме и исправных деталях обладает 100% повторяемостью.
Его настройка заключается лишь в раздвигании витков контурной катушки и подборе емкости связи с антенной.3 й вывод контроллера дешифратора служит для контроля прохождения сигнала при настройке (программно подключенный выход внутреннего компаратора).Контролировать можно с помощью обычного УНЧ. Дешифратор приемника - PIC 16F628A, он осуществляет декодирование и исполнение принятых команд. Система кодер - декодер может работать как по проводам так и с другими приемником
и передатчиком. Каждая посылка 0 и 1 со стороны кодера «закрашена» колебаниями 5,5 кГц для лучшей помехозащищенности + передача контрольной суммы.

Питание приемника обязательно от стабилизированного источника 5 вольт (на схеме не показан, в плате предусмотрен КРЕН 5 А +диод). Питание передатчика от 3,6 вольта но не больше 5,5 вольта (на плате предусмотрен КРЕН 5А+диод).
Картина нажатых кнопок в PORTB (выводы 6 - 13) на передающей части полностью отражается на приемной части в PORTB (выводы 6 - 13) соответственно. Картина нажатых кнопок в PORTA (3>2, 4> 15,15> 16, 16> 17).

Что хочется сказать от себя — отличное решение в любой ситуации дистанционного контроля. В первую очередь это касается ситуации когда есть необходимость управлять большим количеством устройств на расстоянии. Даже если и не нужно управлять большим количеством нагрузок на расстоянии — разработку сделать стоит, так как конструкция не сложная! Пара не редких компонентов — это микроконтроллер PIC16F628A и микросхема MRF49XA — трансивер.

В Интернете уже давно томиться и обрастает положительными отзывами замечательная разработка. Она получила название в честь своего создателя (10 командное радиоуправление на mrf49xa от blaze) и находится по адресу —

Ниже приведем статью:

Схема передатчика:

Состоит из управляющего контроллера и трансивера MRF49XA.

Схема приемника:

Схема приемника состоит из тех же элементов, что и передатчик. Практически, отличие приемника от передатчика (не беря во внимание светодиоды и кнопки) состоит только в программной части.

Немного о микросхемах:

MRF49XA — малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
1. Низкочастотный диапазон: 430,24 — 439,75 Mгц (шаг 2,5 кГц).
2. Высокочастотный диапазон А: 860,48 — 879,51 МГц (шаг 5 кГц).
3. Высокочастотный диапазон Б: 900,72 — 929,27 МГц (шаг 7,5 кГц).

Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц, предусмотренного производителем. С опорными кварцами 11МГц устройства нормально работали на частоте 481 МГц. Детальные исследования на тему максимальной «затяжки» частоты относительно заявленной производителем не проводились. Предположительно она может быть не так широка, как в микросхеме ТХС101, поскольку в даташите MRF49XA упоминается об уменьшенном фазовом шуме, одним из способов достижения которого является сужение диапазона перестройки ГУН.

Устройства имеют следующие технические характеристики:
Передатчик.
Мощность — 10 мВт.

Ток, потребляемый в режиме передачи — 25 мА.
Ток покоя — 25 мкА.
Скорость данных — 1кбит / сек.
Всегда передается целое количество пакетов данных.
Модуляция FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник.
Чувствительность — 0,7 мкВ.
Напряжение питания — 2,2 — 3,8 В (согласно даташиту на мс, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток — 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.
Алгоритм работы.
Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).
Кнопка (или комбинация кнопок) отпускается — соответствующие светодиоды сразу же гаснут.
Тест режим.
И приемник и передатчик по факту подачи на них питания входят на 3 сек в тест режим. И приемник и передатчик включаются в режим передачи несущей частоты, запрограммированной в EEPROM, на 1 сек 2 раза с паузой 1 сек (во время паузы передача выключается). Это удобно при программировании устройств. Далее оба устройства готовы к работе.

Программирование контроллеров.
EEPROM контроллера передатчика.


Верхняя строка EEPROM после прошивки и подачи питания на контроллер передатчика будет выглядеть так…

80 1F — (подиапазон 4хх МГц) — Config RG
AC 80 — (точное значение частоты 438 MГц) — Freg Setting RG
98 F0 — (максимальная мощность передатчика, девиация 240 кГц) — Tx Config RG

82 39 — (передатчик включен) — Pow Management RG .

Первая ячейка памяти второй строки (адрес 10 h ) — идентификатор. По умолчанию здесь FF . Идентификатор может быть любой в пределах байта (0 … FF). Это индивидуальный номер (код) пульта. По этому же адресу в памяти контроллера приемника находится его идентификатор. Они обязательно должны совпадать. Это дает возможность создавать разные пары приемник/передатчик.

EEPROM контроллера приемника.
Все настройки EEPROM, упомянутые ниже, запишутся автоматически на свои места по факту подачи на контроллер питания после его прошивки.
В каждой из ячеек данные можно менять на свое усмотрение. Если в любую используемую для данных ячейку (кроме идентификатора) вписать FF, за следующим включением питания эта ячейка немедленно будет переписана данными по умолчанию.

Верхняя строка EEPROM после прошивки и подачи питания на контроллер приемника будет выглядеть так…

80 1F — (подиапазон 4хх МГц) — Config RG

AC 80 — (точное значение частоты 438 MГц) — Freg Setting RG
91 20 — (полоса приемника 400 кГц, чувствительность максимальная) — Rx Config RG
C6 94 — (скорость данных — не быстрее 2 кбит/сек) — Data Rate RG
C4 00 — (АПЧ выключено) — AFG RG
82 D9 — (приемник включен) — Pow Management RG .

Первая ячейка памяти второй строки (адрес 10 h ) — идентификатор приемника.
Для корректного изменения содержимого регистров как приемника так и передатчика воспользуйтесь программой RFICDA , выбрав микросхему TRC102 (это клон MRF49XA).
Примечания.
Обратная сторона плат — сплошная масса (залуженная фольга).
Дальность уверенной работы в условиях прямой видимости — 200 м.
Количество витков катушек приемника и передатчика — 6 . Если воспользоваться опорным кварцем 11 МГц вместо 10 МГц, частота «уйдет» выше около 40 МГц. Максимальная мощность и чувствительность в этом случае будут при 5 витках контуров приемника и передатчика.

Моя реализация

На момент реализации устройства под рукой оказался замечательный фотоаппарат, поэтому процесс изготовления платы и монтажа деталей на плату оказался как ни когда увлекательным. И вот к чему это привело:

Первым дело нужно изготовить печатную плату. Для этого я постарался как можно подробней остановиться на процессе ее изготовления

Вырезаем нужный размер платы Видим что есть окислы — нужно от них избавиться Толщина попалась 1.5 мм

Следующий этап — очистка поверхности, для этого стоит подобрать необходимый инвентарь, а именно:

1. Ацетон;

2. Наждачная бумага (нулёвка);

3. Ластик (стерка)

4. Средства для очистки канифоли, флюса, окислов.

Ацетон и средства для смывки и очистки контактов от окислов и подопытная плата

Процесс очистки происходит как показано на фото:

Наждачной бумагой зачищаем поверхность стеклотекстолита. Так как он двухсторонний, проделываем все с обеих сторон.

Берем ацетон и обезжириваем поверхность+смываем остатки крошки наждачной бумаги.

И вуалая — чистая плата, можно наносить лазерно-утюжным методом печатку. Но для этого нужна печатка 🙂

Вырезаем из общего колличества Обрезаем лишнее

Берем вырезанные печатки приемника и передатчика и прикладываем их к стеклотекстолиту следующим образом:

Вид печатки на стеклотекстолите

Переворачиваем

Берем утюг и все это дело прогреваем равномерно, до появления отпечатка дорожек на обратной стороне. ВАЖНО НЕ ПЕРЕГРЕТЬ! Иначе поплывет тонер! Держим 30-40 сек. Равномерно поглаживаем сложные и плохо прогретые места печатки. Результатом хорошего перевода тонера на стеклотекстолит служит появление отпечатка дорожек.

Гладкое и увесистое основание улюга Прикладываем к печатке разогретый утюг
Прижимаем печатку и переводим.

Вот так выглядит готовая отпечатанная печатка на второй стороне журнальной глянцевой бумаги. Должно быть видно дорожки примерно как на фото:



Аналогичный процесс проделываем со второй печаткой, которая в вашем случае может быть либо приемником, либо передатчиком. Я разместил все на одном куске стеклотекстолита



Все должно остыть. Затем аккуратно пальцем под струей воды удаляем бумагу. Скатываем ее пальцами слегка теплой водой.

Под слегка теплой водой Пальцами скатываем бумагу Результат очистки

Не всю бумагу получается удалить таким образом. Когда плата высыхает остается белый «налет» который при травлении может создать кое-какие непротравлеенные участки между дорожками. Расстояние-то маленькое.



Поэтому мы берем тонкий пинцет или цыганскую иглу и удаляем лишнее. На фото замечательно видно!



Помимо остатков бумаги, на фото видно, как в результате перегрева в некоторых местах слиплись контактные площадки для микросхемы. Их нужно аккуратно, той же иглой, как можно внимательней разъединить (соскрести часть тонера) между контактными площадками.

Когда все готово переходим к следующему этапу — травление.

Так как у нас стеклотекстолит двухсторонний и обратная сторона сплошная масса нам нужно сохранить там медную фольгу. Для этой цели заклеим ее скотчем.

Скотч и защищенная плата Вторая сторона защищена от травления слоем скотча Изолента как «ручка» для удобвства травления платы

Теперь травим плату. Я делаю это старым дедовским методом. Развожу 1 часть хлорного железа к 3 частям воды. Весь раствор в банке. Хранить и использовать удобно. Разогреваю в микроволновой печи.


Каждая плата травилась отдельно. Теперь берем в руки уже знакомую нам «нулевку» и зачищаем тонер на плате

Радиоуправление своими руками на 12 команд

Схема позволяет управлять моделями или другими устройствами и нагрузками на расстоянии .Допускается нажатие одновременно до 8 кнопок. Схема проста в изготовлении,и требует после сборки только прошивки контроллеров.Индикаторы исполнения команд – светодиоды. Разумеется, к соответствующим выводам процессора можно подключить например затворы мощных полевых или базы биполярных транзисторов через токоограничивающие резисторы.

Схема передатчика:



Приемник


Сверхрегенератор: При номиналах указанных на схеме и исправных деталях обладает 100% повторяемостью.


Его настройка заключается лишь в раздвигании витков контурной катушки и подборе емкости связи с антенной.3 й вывод контроллера дешифратора служит для контроля прохождения сигнала при настройке (программно подключенный выход внутреннего компаратора).Контролировать можно с помощью обычного УНЧ.
Дешифратор приемника – PIC16F628A , он осуществляет декодирование и исполнение принятых команд.

Система кодер - декодер может работать как по проводам так и с другими приемником и передатчиком. Каждая посылка 0 и 1 со стороны кодера «закрашена» колебаниями 5,5 кГц для лучшей помехозащищенности + передача контрольной суммы.
Питание приемника обязательно от стабилизированного источника 5 вольт (на схеме не показан, в плате предусмотрен КРЕН 5 А +диод). Питание передатчика от 3,6 вольта но не больше 5,5 вольта (на плате предусмотрен КРЕН 5А+диод).
Картина нажатых кнопок в PORTB (выводы 6 - 13) на передающей части полностью отражается на приемной части в PORTB (выводы 6 - 13) соответственно. Картина нажатых кнопок в PORTA (3>2, 4> 15,15> 16, 16> 17).

Эта статья - рассказ моделиста про изготовление самодельной радиоуправляемой модели полноприводного автомобиля Range Rover из пластиковой модели. В ней раскрыты нюансы изготовления приводов мостов, установки электроники и многие другие нюансы.

Итак, решил сделать своими руками модель автомобиля!

Купил в магазине обычную стендовую модель Range Rovera. Цена данной модели 1500 рублей, в общем то дороговато, но модель стоит того! Изначально думал делать хаммер, но эта модель на много больше подходит по дизайну.

Электроника у меня была, ну некоторые запчасти я взял от трофийника под названием "кошка" который давно мне был не нужен и разобран на запчасти!

Конечно, можно было взять и другие сборные модели за основу, но хотелось именно такой джип для бездорожья.

Началось все с мостов и дифференциалов которые я делал из медных труб и паял обычным 100w паяльником. Дифференциалы тут обычные, шестерня пластиковая, тяги и кости привода железные от трофийника.

Такие трубки можно купить в любом строительном магазине.


Шестерню дифференциала взял с принтера обычного. Он давно мне был не нужен и вот решил,что ему пора на покой.

Получилось все довольно надежно, но паяльником довольно не удобно работать!

После того как я сделал дифференциалы надо было их чем-то закрыть, закрыл я их крышечками из под таблеток.

И покрасил обычной автоэмалью. Получилось красиво, хотя навряд ли трофийнику нужна красота.

Затем надо было сделать рулевые тяги и поставить мосты на раму рама была в комплекте и на мое удивление она оказалась железной, а не пластмассовой.



Сделать это было довольно не просто так как масштаб деталей весьма небольшой и паять тут не получалось, пришлось болтами прикручивать. Рулевые тяги я взял от того же старого трофийника который я разобрал.


Все детали дифференциалов на подшипниках.Так как я делал модель на долгое время.

Так же заказал редуктор с понижающей передачей, передача будет включаться микросервомашинкой с пульта.

Ну в общем дальше я установил пластиковое днище, вырезал в нем отверстие, установил редуктор, карданые валы, редуктор самодельный, двигатель обычный коллекторный для такой маленькой модели нету смысла ставить бк да и скорость мне не важна.

Двигатель от вертолета, но в редукторе он довольно мощный.

Самое главное модель едет не рывками,а плавно без задержки редуктор было сделать не просто но деталей у меня завались главное смекалка.

Редуктор прикрутил к днищу держался он отлично, а вот чтобы прикрепить днище к раме пришлось повозиться.


Дальше установил электронику, амортизаторы,аккамулятор. Сначала я поставил электронику слабоватую да и регулятор и приемник были единым целым но затем я поставил все отдельно и электроника было помощнее.



Ну и наконец покраска, установка всех основных узлов, декали, фары ну и другое. Красил все обычной краской для пластмассы в 4 слоя затем крылья красил коричневый и шкурил детали чтобы предать потертый и изношенный вид.

Кузов модели и цвет полностью оригинальны, цвет нашел в интернете и фото настоящей машины все делал по оригиналу. Такая комбинация цветов существует на реальной машине и в такой цвет их красили на заводе.

Ну и вот заключительные фото.Видео с испытанием добавлю чуть позже, а модель получилась весьма проходимой, скорость составила 18 км\ч, но я делал ее не для скорости. В общем я доволен своей работой, а оценивать ее вам.


Машинка не большого размера масштаб 1к24 в размере и есть весь смысл задумки я хотел себе мини трофийника.



Модель не боится влаги! Герметил все сам просто покрыл электронику лаком, очень надежно ни какая влага не страшна.

Сервомашинка микро парк от самолета на 3,5 кг.





Аккумулятора хватает на 25 минут катания но я буду ставить более мощную электронику и аккумулятор, т.к этой не вполне достаточно.



Даже бамперы такие же как и на оригинале. И крепления на них теже. Привод на ней не 50на50%,а60на40%.

В общем Range Rover получился в деревенском стиле я даже и не думал,что получится так качественно покрасить т.к красить толком не умею, хотя ни чего трудного нет!


Забыл добавить для красоты еще установил каркас безопасности и полноценую запаску. Запаска и каркас были в комплекте с набором.

Еще про радиоуправляемые модели :

Мишаня комментирует:

Расскажи а как устроен полный привод, внутри моста что крому раздатки находиться? Там должен быть поворотный кулак ведь.