Автономное электроснабжение загородного дома своими руками. Автономное электроснабжение дома: два способа обеспечить бесперебойную подачу электроэнергии Полностью автономный загородный дом

Актуальность автономного снабжения дома электроэнергией с различной степенью остроты ощущается многими владельцами загородного жилья. Одних не устраивает неустойчивость работы электросетей в своем населенном пункте – перебои в снабжении или нестабильное напряжение не дают возможности с полным комфортом пользоваться современными приборами. У других и вовсе нет возможности в ближайшей перспективе подключиться к ЛЭП. Третьих настораживают постоянно растущие тарифы, и они, мысля на перспективу, хотят снизить свою зависимость от энергоснабжения, чтобы очередные удорожания не сказывались чувствительно на семейном бюджете. Наконец, ширится круг домовладельцев, которые и вовсе мечтают обрести полную независимость в вопросах энергообеспечения своих владений.

Следует сразу сказать, что реализация подобных задач – дело очень даже непростое, и, на первых порах особенно – довольно затратное. Так что если кто-то собирается заниматься подобным проектом с перспективой получить материальный выигрыш, то полной окупаемости придется радоваться весьма нескоро. Тем не менее, автономные электростанции для загородного дома становятся все популярнее, и прослеживается тенденция к их все более широкому распространению. Особенно в плане использования альтернативных источников энергии.

В настоящей публикации попробуем рассмотреть основные моменты, связанные с установкой автономных источников электроэнергии. Так проще будет ориентироваться в этом вопросе при составлении наметок собственного проекта.

Достоинства и недостатки автономных систем электроснабжения дома

Чтобы, как говорится, очертить горизонты предоставляемых возможностей, но с другой стороны – несколько «приземлить» излишне радужные, «прожектёрские» настроения, имеет смысл для начала вкратце ознакомиться с общими достоинствами и недостатками автономных систем электроснабжения дома.

Итак, в пользу автономных домашних электростанций говорит следующее:

  • При условии проведения правильных профессиональных расчетов, грамотного составления проекта и его качественной реализации, хозяевам загородного дома больше не придется сталкиваться к «капризами» местных электросетей. Имеются в виду случаи внезапного исчезновения напряжения или сильных его скачков, грозящих вывести бытовые приборы или инструменты из строя. Хорошо отлаженная система работает как часы, домашняя техника – в безопасности.

  • Уходят проблемы с возможными лимитами мощности подключения к сетям и объемами потребления энергии. Соответственно – и с оплатой по установленным тарифам. Владелец волен насыщать свой быть любыми приборами в рамках эксплуатационных возможностей своей энергосистемы, то есть создавать любой уровень комфорта.
  • Техника, используемая для выработки электроэнергии, как правило, обладает внушительным запасом надежности, и выходит из строя довольно редко. Естественно, при ее правильной эксплуатации и регулярном обслуживании.
  • Если мыслить масштабно, и учитывать опыт применения домашних электростанций в странах Западной Европы, то можно не только полностью удовлетворять собственные потребности в электроэнергии, но и реализовывать ее излишки. Для того существуют специальные программы взаимодействия с компаниями энергетического комплекса. Естественно, такой подход ускорил бы окупаемость затрат и даже вывел собственный «энергоблок» в прибыльное начинание.

Правда, чтобы выйти на подобный уровень требуется не только реализация тщательно продуманного проекта с весьма значительными стартовыми затратами, но и прохождение целого ряда бюрократических процедур и технических экспертиз. Тем не менее, подобное направление в «частной электроэнергетике» наверняка имеет немалый потенциал будущего развития.

Теперь более плотно коснемся недостатков автономной системы электроснабжения.


  • Уже не раз говорилось, но – повторимся, стартовые вложения как на разработку проекта, так и на приобретение необходимого комплекта оборудования, его монтаж и отладку, могут быть очень внушительными. Да и эксплуатационные расходы могут оказаться немалыми. И ожидать быстрой окупаемости было бы неправильно.
  • Все риски, в том числе материальные, берет на себя потенциальный владелец электростанции. Это лишний раз говорит о том, с какой тщательностью должен продумываться и прорабатываться проект.
  • На хозяев возлагается и полная ответственность за эксплуатацию оборудования, его своевременное техническое обслуживание, соответствующий уход, соблюдение всех требований безопасности. Если система выходит из строя, и дом остается без электроэнергии – жаловаться некому и незачем. Точнее, никто не мешает обратиться за технической поддержкой к специалистам – но это уже будет исключительно за свой счет.
  • Проведение регулярных профилактических мероприятий (а без этого – никак) также потребует дополнительных затрат, так как для их выполнения требуется профессиональный подход. Ситуация может усугубляться тем, что дома с автономной электростанцией довольно часто расположены на значительном удалении от крупных центров. То есть придется брать на себя и транспортные затраты для вызова специалистов.

Так что тому, кто загорелся идеей перевести свои владения исключительно на автономное электроснабжение, следует десять раз все продумать, просчитать, взвесить все «pro & contra», прежде чем начать вкладывать средства в реализацию столь масштабного проекта. И не ждать при этом сиюминутной выгоды – окупаемость может растянуться на 10 и более лет. И это при том что само оборудование тоже имеет какой-то, пусть и немалый, но все же ограниченный ресурс эксплуатации.

Помимо перечисленных, различные по принципу работы типы генерирующего оборудования имеют еще и собственные достоинства и недостатки – о них будет рассказано в соответствующих подразделах публикации.

А какие источники энергии можно использовать для автономного электроснабжения?

Здесь совершенно очевидно разделение на две группы.

  • К первой можно отнести электрические генераторы, имеющие силовой привод и использующие в качестве источника сторонней энергии один из видов топлива – жидкое (бензин или солярка) или природный газ.
  • Ко второй группе отнесём генераторные установки, которые приводятся в действие совершенно бесплатными, природными источниками энергии. К этому определению подойдут ветровые генераторы, и гидравлические системы.

А теперь познакомимся с этими источниками электроэнергии поближе.

Генераторы, использующие энергетический потенциал жидкого или газообразного топлива

Самый простой и быстрый в реализации способ обеспечить свой дом автономным источником энергии – прибрести генераторную установку, оснащенную приводом, использующим жидкое топливо или природный газ.

Несмотря на различия в типах используемых двигателей, принцип выдерживается общий. Двигатель внутреннего сгорания обеспечивает выработку кинетической энергии – крутящего момента с определённой скоростью вращения. Вращение передается на ротор генератора. Выработанная электроэнергия поступает на точки ее потребления.


Двигатель оснащен системой запуска (стартером), в зависимости от модели стартер может быть ручным или электрическим. Безусловно, для стационарной установки предпочтение отдается второму.

В чем достоинства таких источников электроэнергии:

  • Они вырабатывает переменный электрический ток, так сказать, в «готовом к употреблению», то есть к подаче на нагрузку виде – 220 вольт. То есть не требуется никаких дополнительных устройств-преобразователей.
  • Топливные генераторы являются отличным решением, если требуется резервный источник энергии на случай перебоев в линиях электропередач. При пропадании напряжении в сети автоматика даст команду на запуск стартера, и спустя непродолжительное время энергоснабжение в доме будет восстановлено. А когда напряжение в подающей линии появится (стабилизируется), произойдет обратное переключение, и двигатель будет заглушен.

Аппаратура ввода резервного источника энергии часто уже является составной частью приобретаемой силовой установки. Если нет, то предусматривается возможность ее подключения, а сам блок управления приобретается отдельно.

  • Генераторы, работающие на жидком топливе, могут стать и основным источником электроэнергии, если загородные владения посещаются хозяевами эпизодически и на не очень продолжительное время. Понятно, что в таких условиях, как правило, дом не перенасыщен бытовой техникой, и есть возможность приобрести довольно компактную установку, которую несложно привезти с собой. Просто чтобы не переживать за ее сохранность в оставляемом, например, на неделю до следующих выходных доме.
  • Практически незаменимой становится такая электростанция в условиях ведения загородного строительства, если пока нет возможности подключиться к электросети.

  • Если разобраться, то все другие автономные источники электроэнергии сильно зависимы от времени суток и года, от установившейся на улицы погоды. А вот топливные электростанции способны полноценно работать в любой момент, когда потребуется.

К недостаткам такого подхода в организации автономного электроснабжения дома можно отнести следующее:

  • Требуется постоянный запас топлива, которое, кстати, весьма недешевое и, к сожалению, постоянно растёт в цене. А для хранения хотя бы минимального запаса на непредвиденные ситуации необходимо создание определённых условий. Связанных в том числе и с проблемами безопасности проживания в доме.
  • Работа жидкотопливной электростанции всегда сопряжена с выхлопом отработанных газов. Такое «соседство» может оказаться и неприятным в плане комфорта, и даже весьма опасным, так как выхлопы весьма токсичны для человека. То есть при стационарной установке этот вопрос придётся продумывать заранее.
  • Работа двигателя внутреннего сгорания априори не может быть бесшумной. Это тоже накладывает определенные требования к размещению электростанции. Так как генератор нежелательно оставлять на открытом воздухе, придется для него возводить отдельное помещение на некотором отдалении от жилых построек, с соблюдением требований по его вентиляции и звукоизоляции.

  • Как и любая другая техника с двигателями внутреннего сгорания, генераторы не могут работать беспрерывно – это оговаривается в их характеристиках. Да, выпускаются модели, способные эксплуатироваться весьма длительное время, но все равно паузы для проведения профилактических мероприятий, технического обслуживания нужны.
  • Стоимость топлива вряд ли дает возможность говорить о перспективах экономии – сетевое электричество все равно получается значительно дешевле.

Уже отмечалось, что такие электростанции могут быть бензиновыми и дизельными. Если предполагается приобретение генератора для стационарной установки, рассчитанного на продолжительную работу, то предпочтение, безусловно, отдается дизелю. Такие агрегаты, хотя и стоят дороже бензиновых, превосходят надёжностью, устойчивостью выдаваемых оборотов, способностью к длительным безостановочным циклам эксплуатации. Для нечастых и непродолжительных включений может быть достаточно и качественного четырехтактного бензинового генератора, как более простого в обслуживании и запуске, да и более дешевого и менее габаритного.

Цены на бензиновые электростанции Huter

бензиновый генератор Huter

Кстати, некоторые существенные недостатки бензиновых и дизельных электростанций в определенной степени снижены в газовых установках. Здесь и шумность поменьше, и выхлопы не столь «агрессивные», и стоимость «голубого топлива» несравнимо ниже.


Но и с ними тоже есть свои негативные нюансы. Так, установка подобной электростанции потребует согласования с организацией, поставляющей газ, составления проекта, а монтаж ее и пусконаладочные работы должны проводиться только специалистами газового хозяйства. Вторым фактором, существенно ограничивающим широкое распространение таких силовых установок, является их очень высокая стоимость, даже без учета предстоящих затрат на проектные и монтажные мероприятия.

Таким образом, рассматривать топливные генераторы в качестве основного источника электроснабжения при постоянном проживании в доме – вряд ли приходится. А вот в качестве надежного резервного, постоянного готового прийти «на выручку» - лучше ничего и не придумать.

Какой выходной мощности потребуется генератор?

Казалось бы – вопрос несложный. Надо всего лишь просуммировать потребляемые мощности приборов, подключаемых к домашней электросети и заложить определенный эксплуатационный запас.

Но при такой методике вполне можно очень сильно ошибиться как в одну, так и в другую сторону. И то, и другое – плохо. Электростанция с недостаточной мощностью будет глохнуть при высокой нагрузке. Работа с избытком невостребованной мощности негативно влияет на сам генератор. Кроме того, с ростом этого параметра весьма сильно увеличивается и стоимость оборудования.

В чем же особенности расчета?

  • Прежде всего, нельзя забывать, что многие бытовые приборы и электроинструмент потребляют не только активную, но еще и так называемую реактивную мощность. И общий показатель получается выше – он определяется отношение номинальной мощности к коэффициенту, называемому cos φ . Этот коэффициент обычно тоже указывается в технических характеристиках изделия. И чем он меньше, тем выше итоговый показатель.

  • Многие бытовые приборы и инструмент характеризуются пиковыми показателями пускового тока, которые превосходят номинальные порой в несколько раз. Да, они непродолжительные, но вероятность того, что суммарное сиюминутное потребление превысит возможности неправильно просчитанного генератора – все же есть.

Если просто просуммировать показатели потребляемой мощности (тем более, с учетом реактивной и пусковой поправки) все х имеющихся в доме электроприборов, то наверняка получится очень большое значение. Но вероятность того, что вся нагрузка включается одновременно – крайне невелика. Кроме того, если генератор используется в качестве резервного источника питания (как оно обычно и бывает), на время его работы потребуется все же соблюдать определенную «энергетическую дисциплину».

Имеется в виду, что ряд приборов, безусловно, остаются включёнными практически всегда – это холодильник, система обеспечения работы газового котла, освещение в требуемых объёмах. Вряд ли хозяева захотят остаться без телевизора или (и) компьютера. Но вот с остальными приборами требуется осмотрительность. Скажем, если в данное время готовиться пища на электроплитке, то, по всей видимости, стоит подождать с запуском стиральной или посудомоечной машинки, с микроволновкой или обогревателем. И так далее – должны задействоваться те приборы, без которых на период работы резервного источника электроэнергии действительно нельзя обойтись.

Аналогичный подход должен распространяться и на электроинструмент, если генератор используется в период строительства, или же требуется срочное выполнение каких-то работ по хозяйству. Вряд ли имеет смысл, например, одновременно проводить сварочные работы и запускать какое-то обрабатывающее оборудование. Впрочем, решать хозяевам.

Безусловно, хозяева дома сам вольны выбирать режим потребления энергии, то есть составлять перечень приборов и инструментов, одновременную работу которых должен обеспечивать генератор. Но во всем должна быть осмотрительность и «трезвый» взгляд.

Ниже читателю предлагает онлайн-калькулятор, который поможет быстро и с достаточной степень точности просчитать требуемую мощность генератора. Пользователю предстоит лишь указать тип и количество ламп, используемых для освещения, а затем галочками отметить те приборы или инструменты, которые, по его мнению, должны одновременно обеспечиваться электроэнергией. В алгоритм расчеты внесены средние показатели мощностей приборов и инструментов уже с поправками на реактивную составляющую и на пусковые токи.

Калькулятор расчета необходимой мощности топливного генератора

Укажите запрашиваемые значения и нажмите
«РАССЧИТАТЬ ТРЕБУЕМУЮ МОЩНОСТЬ ЭЛЕКТРОСТАНЦИИ»

ОСВЕЩЕНИЕ
Тип и количество ламп, которые могут быть задействованы одновременно

Лампы накаливания, штук

Лампы люминесцентные энергосберегающие, штук

Лампы светодиодные, штук

БЫТОВЫЕ ПРИБОРЫ
Отметьте галочками те, что включены постоянно или с большой долей вероятности могут быть задействованы одновременно при работе электростанции

Бытовые приборы

ЭЛЕКТРОИНСТРУМЕНТ
Отметьте галочками тот, что с большой долей вероятности может быть задействован одновременно при работе электростанции

Электроинструмент

Вот на этот показатель, учитывающий еще и эксплуатационный запас, следует ориентироваться при выборе модели топливного генератора.

Электростанция на солнечных батареях

Одним из наиболее перспективных направлений в развитии автономной электроэнергетики является использование солнечных батарей. Специальные полупроводниковые фотоэлементы способны преобразовывать энергию солнечных лучей в электрическую. У каждого из элементов не особо выдающие показатели вырабатываемой мощности, но они составляются в большие по площади панели, а определенное количество таких панелей уже способно обеспечивать энергией домашнее хозяйство.


Что можно сказать о достоинствах такой системы:

  • Оборудование не нуждается в топливе – для получения электрическая используется исключительно энергия солнечных лучей.
  • Отсутствие каких-либо сложных механических кинематических узлов делает такие электростанции очень надежными и долговечными. Срок их службы исчисляется десятилетиями.
  • Солнечные электростанции не требуют сложных профилактических работ – достаточно содержать в чистоте рабочую поверхности панелей.
  • Если генераторы, преобразующие кинетическую энергию (вращение) в электрическую, имеют какое-то конечное значение своей мощности, то солнечная электростанция при необходимости и достаточности места может наращиваться дополнительным количеством панелей. То есть система получается более гибкой и имеет широкий потенциал к дальнейшему развитию.
  • Солнечная электростанция совершенно бесшумна, не имеет ограничений по месту установки. Точнее, для монтажа панелей может подойти любой незатенённый участок как на крыше дома и хозяйственных построек, так и на придомовой территории

Теперь несколько слов о недостатках :

  • Совершенно очевидно, что работоспособность такой станции имеет выраженную цикличность – в темное время суток выработки энергии не происходит. Кроме того, прослеживается очень высокая зависимость от продолжительности светового дня и погодных условий. Для работы с полной эффективностью панелям требуется прямой солнечный свет. В пасмурную погоду выработка резко падает.
  • Существенным недостатком является и высокая стоимость самих панелей. Даже без учета монтажных работ и приобретения всего необходимого для организации полноценной электростанции оборудования. Так, один ватт выработанной энергии потребует самих панелей на сумму, сопоставимую с 1,5 доллара. Несложно подсчитать, во что примерно обойдется приобретение фотоэлементов для, скажем, гелиосистемы с отдачей в 1 и более кВт – многих это отпугивает сразу.
  • Солнечные панели вырабатывают электричество с небольшим показателем напряжения, и его требуется привести к стандартам потребления.

В силу последнего пункта, а также из-за нестабильности выдаваемой мощности, солнечная электростанция организуется по принципу аккумуляции и дальнейшего преобразования выработанной энергии. Примерно эта схема выглядит так:


Выработка электроэнергии происходит в установленных в требуемом количестве солнечных панелях (поз. 1). Специальный прибор – контроллер системы (поз. 2), направляет выработанный потенциал на заряд аккумуляторных батарей (поз. 3). При включении нагрузки постоянный электрический ток напряжением 12 или 24 В поступает в инвертор (поз. 4), где преобразуется в переменный напряжением 220 В/50 Гц, и уже в таком виде передается на точки потребления (поз 5).

Схема, понятно, дана с большим упрощением. Так, на ней показан один аккумулятор, а на деле это обычно целая батарея из нескольких накопителей энергии, обладающая очень высокой ёмкостью.


Нередко непосредственно от аккумуляторов (точнее, от контроллера) отводится низковольтная линия, минующая инвертор. К ней можно подключить систему освещения дома, укомплектованную, например, светодиодными лампами, требующими напряжения всего в 12 вольт.

Выходную мощность инвертора рассчитать можно по тому же принципу, что и мощность генератора, применив тот же калькулятор. Но это, как говорится, сиюминутная мощность, показывающая возможность одновременного подключения той или иной нагрузки. А вот расчет количества самих солнечных панелей и аккумулирующего блока все же стоит поручить специалистам. Здесь немало тонкостей, сложных для неискушённого в этих вопросах человека.

Система расчета основана на том, что скрупулезно просчитываются все точки потребления энергии (освещение, бытовые приборы и т.п.), с учетом их мощности и средней продолжительности работы за определенный период (допустим, сутки). После суммирования получается результат, выраженный в киловатт-часах (кВтч) – такое количество энергии необходимо обеспечить ежедневно для полноценной устойчивой работы всего электрического оборудования дома.

Исходя из этого показателя и напряжения аккумуляторов просчитывают их необходимую суммарную емкость, выраженную в ампер-часах (Аh). При этом учитывается и эксплуатационный запас, и определенный уровень, ниже которого разряжать АКБ не рекомендуется (скажем, 25÷30 % от полной зарядки). Соответственно, по суммарному показателю подбирается требуемое число аккумуляторов, из которых собирается общая батарея.

Наконец, рассчитывается число солнечных панелей определённой мощности, которое будет способно обеспечить систематическое восполнение заряда аккумуляторов. При этом принимается в расчет множество факторов – помимо характеристик самих панелей, учитываются географическая широта региона, продолжительность светового дня, климатические особенности, специфика места размещения панелей и другое. Конечным результатом должно стать оптимальное количество панелей.

Провести подобные вычисления самостоятельно – тоже, конечно, можно, но велика вероятность совершить ошибку, просто из-за некорректной оценки исходных данных. Впрочем, как уже говорилось, система отличается большой гибкостью, и при необходимости (или при появлении материальной возможности) ее можно наращивать.

Грамотно спланированная и качественно смонтированная система вполне способна стать основным источником электроэнергии для загородного дома. Но если она используется «в чистом виде», то всегда остается вероятность остаться без электричества в силу непредвиденных внешних обстоятельств – затянувшейся непогоды, когда при привычном потреблении приток энергии становится минимальным, что ведет к разрядке аккумуляторов.

Следует быть готовым, что первоначальные затраты будут весьма внушительными, и строить надежды на слишком быструю окупаемость вложенных средств – несколько наивно.

Видео: Пример домашней солнечной электростанции на 6 кВт

Ветровые электростанции

Колоссальную энергию перемещения воздушных масс (ветра) человек использует с древнейших времён. Достаточно вспомнить парусные корабли или, например, ветряные мельницы. Нашла она применение и ветроэнергетике, причем в некоторых странах эта отрасль поставлена буквально на промышленную основу.

Применяются ветровые установки и для обеспечения электроэнергией частных домов.

По сути, такая установка представляет собой обычный генератор, на оси ротора которого установлена крыльчатка с лопастями, приводимыми во вращение потоком воздуха. Как вариант – на ось ротора вращение передается посредством той или иной кинематической схемы (редуктора) – смысла это не меняет. А расположение оси крыльчатки может быть как горизонтальным, так и вертикальным.


Что можно сказать о достоинствах ветровой электростанции?

  • Источник энергии – совершенно бесплатный.
  • Работа электростанции не сопровождается никакими выбросами в атмосферу.
  • Существуют технологии самостоятельного изготовления энергетических установок, например, с использованием обычных или даже просто мощных неодимовых магнитов.

Недостатков больше, причем – они весьма существенные.

  • Ветровая установка также очень зависима от установившейся погоды.
  • Для того чтобы поймать хороший ветер иногда приходится поднимать ветряк на значительную высоту, что усложняет и без того непростой монтаж.
  • Работа такой станции может сопровождаться весьма неприятными звуковыми эффектами.
  • Не стоит ожидать от домашнего ветряка слишком высокой отдачи – позднее мы посмотрим на этот вопрос чуть пристальнее.
  • Стоимость готовых ветровых станций – весьма высокая, и окупаемости, если рассчитывать только на энергию ветра, ожидать вообще не приходится.

Ветровую энергетическую установку в принципе следует рассматривать всерьез в качестве варианта только в том случае, если среднегодовой показатель ветра составляет не менее 4-5 м/с. В противном случае такая станция вообще не принесет никакой ощутимой пользы.


Этот показатель выводится по результатам многолетних метеорологических наблюдений, с учётом и максимальных значений, и полностью безветренных дней. Таким образом, он позволяет с достаточной степенью достоверности рассчитывать выработку «ветровой» электроэнергии на определенный период: неделю, месяц, год и т.п. На карте-схеме показаны лишь приблизительные значения, но узнать конкретное для своего населенного пункта несложно – достаточно обратиться в местную метеослужбу.

А вот в технических характеристиках ветровых генераторов обычно фигурирует другой показатель – расчетная скорость, которая обычно превосходит среднегодовую в 1,5 — 2 раза. Ориентироваться на него при расчетах на перспективу – будет неверным. Он, скорее, показывает номинальную мощность генератора при оптимальной скорости вращения ротора.

Чтобы убедиться в том, что вряд ли стоит надеяться только лишь на «ветровую» электроэнергию, достаточно провести расчет возможной ее выработки.

Следует правильно понимать, что каким бы совершенным ни был сам ветряк или подключенный к нему генератор, объем энергии все равно определяется площадью, с которой она будет «сниматься». В случае с «классическим» горизонтальным ветряком эта площадь ограничена площадью круга, описываемого вращающимися лопастями. А ветровая энергия лежит в прямой зависимости от скорости перемещения потока и плотности воздуха. То есть никак «выше головы не прыгнешь».

Интересно, что при этом не имеет значения количество лопастей (выпускаются установки даже с одной лопастью). Наоборот, когда лопастей больше трех, появляются негативные аэродинамические моменты, снижающие общую производительность системы.

Цены на популярные бензиновые электростанции

Итак, существует формула, учитывающая упомянутые параметры, а также коэффициент использования ветровой энергии, коэффициенты полезного действия самого генератора (как правило, он не выше 0,85) и редуктора. КПД редуктора тоже бывает обычно не выше 0,9, но если вращение с крыльчатки на генератор передается напрямую, то можно принять его и за единицу.

Формулу приводить не станем – она заложена в алгоритм расчета предлагаемого вниманию онлайн-калькулятора.

Сегодня электричество в дачном доме уже не относится к излишествам: комфортный отдых и эффективный уход за участком сложно представить без соответствующего оборудования, так что задумываться об энергоснабжении рано или поздно придется.

Естественно, в этом процессе есть множество нюансов, и потому мы настоятельно рекомендуем вам ознакомиться с данной статьей. Конечно, все тонкости не раскроем, но общее представление о масштабах предстоящей работы вы получите.

Где взять?

Традиционные источники

И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:

  • Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
  • Автономное – в качестве источника выступает генератор.

Рассмотрим оба варианта более подробно.

  • Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.

  • С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.

Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.

  • Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).

  • Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.

В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.

Альтернативные источники

Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».

Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:

Методика Особенности выработки энергии
Геотермальная На участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Поскольку в глубине грунта температура практически постоянна, то при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла.

Извлеченная энергия может использоваться как для прямого обогрева дома, так и для выработки электричества.

Солнечная На крыше устанавливаются либо солнечные коллекторы из стеклянных трубок, заполненных теплоносителем, либо солнечные батареи.

Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения.

Ветряная На крыше дома или на отдельной мачте устанавливаем ветряк, соединенный с генератором.

При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач.

Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день — и придется сидеть в темноте! Вот почему специалисты настоятельно рекомендуют комплектовать подобные установки емкими аккумуляторами, а в качестве резервного источника питания держать как минимум небольшой дизель-генератор.

Особенности монтажа электросети

Если с источниками все более-менее ясно, переходим к правилам обустройства самой электросети:

  • Монтаж проводки и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
  • На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО – автоматический размыкатель цепи. Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.

Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.

  • При использовании генераторов нужно тщательно рассчитывать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
  • Дачные дома из блок — контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью. Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.

Одним из важнейших элементов среди всех инженерных коммуникаций жилого дома является электроснабжение. В наше время просто невозможно представить себе загородный коттедж без электричества, с его помощью остаются доступными все привычные для городского человека блага цивилизации, комфорт и уют.

Всё обширнее становится перечень электрооборудования, используемого в загородных домах. Теперь, кроме привычных холодильников, обогревателей, пылесоса и светильников, обеспечить электроэнергией часто требуется скваженные насосы, тёплые полы, кондиционеры, электрические сауны, подогрев бассейнов, уличные ландшафтные светильники и многое другое.

Для бесперебойной и безопасной работы систем водоснабжения, отопления, бытовых приборов и освещения потребуется исключительно грамотный подход в вопросах организации электроснабжения жилища.

Планирование и проектирование

Составление подробной и технически выверенной проектной документации позволит правильно рассчитать необходимое количество материалов, учесть абсолютно все нюансы, избежать ряда ошибок, исправить которые без серьёзных финансовых затрат или срывов сроков строительства будет очень сложно. Это и не удивительно, ведь монтаж электропроводки начинается на стадии производства черновых работ, а заканчивается уже после отделки установкой светильников и фасадов розеток/выключателей.

Более того, при строительстве новых зданий для получения разрешения на пользование электроэнергией домовладелец должен кроме подачи заявки в энергоснабжающую организацию согласовать проект электроснабжения, в том числе с Энергосбытом и Госэнергонадзором.

В любом случае, приступать к электротехническим работам без планирования нельзя. Обязательно нужно предварительно учесть количество электрооборудования, которое будет использовано, его виды, спецификацию, мощность. На основании этих данных можно рассчитать требуемую нагрузку. Произвести расчёт общей потребляемой мощности достаточно просто. Необходимо сложить номинальную мощность всех приборов и оборудования, которые у вас имеются и которые планируется подключить в будущем, и умножить полученную цифру на 0.7 — «коэффициент одновременности». Конечно, лучше иметь некоторый запас мощности.

Подключение к общим сетям

В большинстве случаев подключение к ЛЭП производится воздушным путём с использованием изолированного кабеля или провода в негорючей оболочке, часто проложенном на стальном тросе. Выбирают вводные провода и кабели в соответствии с ПЭУ. Для подключения дома по земле применяется бронированный кабель, по характеристикам согласованный в Энергонадзоре.

Воздушные вводные линии с помощью специальных крюков с изоляторами, кронштейнов или трубостоек крепятся на капитальных конструкциях дома в непосредственной близости от счётчика электроэнергии.

В стене дома делается сквозное отверстие для подвода электропитания. В это отверстие предварительно вставляется металлическая или пластиковая труба-гильза.

Чаще всего ввод для дачного или садового дома осуществляется по однофазной схеме. Однако если требуется запитать большое количество мощных бытовых приборов и потребление энергии существенно превышает 4 кВт в час, то целесообразно использовать линию трёхфазную с тремя линейными и одним нейтральным проводом.

Иногда можно столкнуться с ограничением мощности, выделенной для конкретных домов (дачные посёлки не более 3 кВт, в населённых пунктах до 6 кВт, новые коттеджные городки около 15-25 кВт). Если потребность превышает данный лимит, выходом из ситуации может быть применение специальной автоматики, которая по заданной программе обеспечивает бесперебойную работу основных потребителей за счёт второстепенных.

Превышение ограничений и лимитов ведёт к падению напряжения в общей сети и может вызвать аварийное отключение электроснабжения.

Заземление

По всем нормам безопасности современный коттедж должен иметь заземляющий контур. В качестве «естественных» заземлителей рекомендуют использовать металлические трубы водоводов, лежащие в земле; обсадные трубы скважин; железобетонные и металлические конструкции сооружений и зданий, имеющие соприкосновение с землёй.

Также заземление выполняется из стального прута круглого или прямоугольного сечения толщиной от 6 мм, уголка с толщиной полок от 4 мм. Такие стержни не должны быть окрашенными, лучше, если они будут оцинкованными. Их закапывают ниже глубины промерзания почвы, после чего обваривают стальными полосами, на которые при помощи болтового соединения крепится медный проводник сечением не менее 2.5 мм 2 , идущий на главную шину заземления в электрощите. Сопротивление заземления не должно превышать 4 Ом.

В электрическом щите защитные проводники от каждого потребителя закрепляются на общей шине. Заземляющий проводник должен быть равным в сечении питающему проводу. Поэтому сейчас для разводки пользуются трёхжильными проводами — земля, линия, нейтраль.

Выбираем тип и нужное сечение проводников

От правильного выбора сечения используемых для электропроводки проводов зависит работоспособность и надёжность всей сети в целом. Главным критерием для расчёта сечения провода является суммарная мощность потребителей, питаемых данным проводником. Важным также является, при каких температурных условиях будет эксплуатироваться электросеть и наружной или скрытой будет проводка.

Основные целесообразные показатели сечения проводов, используемых в электроснабжении частного жилья, уже давно определены практикующими электриками.

Для организации подключения электроснабжения дома применяются медные провода или кабели сечением не менее 6 мм 2 , а также алюминиевые — не менее 16 мм 2 . Для подключения силовых розеток применяются трёхжильные медные провода в двойной изоляции сечением от 2.5 мм 2 . Для освещения достаточно сечения 1 — 1.5 мм 2 . Особо мощные потребители, такие как электрическая варочная поверхность, электрокотёл, проточный водонагреватель, духовка и т.д., запитываются проводом сечением в 4 и более мм 2 , который прокладывается напрямую к электрическому щиту, минуя распределительные коробки.

Если возникают сложности с точным определением тока нагрузки, а финансы позволяют — нужно брать провода или кабели с запасом сечения в большую сторону.

В домах, построенных из дерева или по каркасной технологии, необходимо использовать специальные проводники, не поддерживающие горение. Например, самозатухающий провод NYM или ВВГнг.

В помещениях с высокой температурой воздуха (сауна, баня) применяют термостойкий кабель, изоляция которого способна выдержать до 180 градусов.

Электрический щит

Электрощит может быть встраиваемым и в навесном исполнении. Он располагается на капитальной стене, как можно ближе к месту силового ввода на высоте не более 1700 мм от пола.

В распределительном щите устанавливаются несколько групп автоматов, УЗО, пакетные выключатели, коммутационные шины (ноль и земля). Часто в электрощите располагают счётчик.

Размер электрического шкафа выбирают исходя из количества и типа элементов, которые в нём размещаются. Целесообразно иметь некоторый запас мест для дополнительных автоматов, в случае если потребуется подключить новые потребители.

Для упрощения разводки мощностей и разгрузки основного электрического шкафа рекомендуется устраивать упрощённые щитки для отдельных этажей многоэтажного здания, а также для отдельно стоящих построек. Малые распределительные щиты запитываются от основного проводами сечением от 4 мм 2 .

Устройства защиты

Автоматы защиты устанавливаются на DIN-рейку в щите и служат для защиты электропроводки от короткого замыкания или перегрузок. Их применяют для определённых групп потребителей, для конкретных бытовых приборов высокой мощности, или требующих отдельных приборов защиты и отключения (кондиционеры, тёплые полы, джакузи и т.д.).

Выбирают автоматы исходя из мощности бытовых приборов и потребителей, за которые они отвечают. Эти устройства разрывают цепь в случае превышения определённой для конкретного автомата силы тока. Токовые характеристики срабатывания автоматических выключателей должны быть меньше предельно допустимых токов для кабеля проводки. Для кабеля сечением 1.5 мм 2 автомат должен быть не долее чем на 16 А, 2.5 мм 2 — 25 А, 4 мм 2 — 32 А, 6 мм 2 — 40 А.

Если автоматы защиты отвечают за безопасность электроцепей и срабатывают в критических ситуациях, то устройства защитного отключения защищают человека от поражения током и срабатывают в считанные доли секунды. УЗО сравнивает показатели тока, идущего к потребителю с током, который от него возвращается и в случае обнаружения разницы сразу отключает проблемную цепь.

УЗО подбирают в зависимости от расчётного тока утечки и планируемой нагрузки. Для обеспечения защиты человека от ударов током применяют устройства с порогом отключения 10 — 30 мА, для пожарных целей — общие УЗО на 100 — 300 мА, которые ставятся на всю проводку. Вообще устройства защитного отключения устанавливаются на группы потребителей или отдельные приборы (тёплый пол, стиральная машина, водонагреватель, и т.п.).

Стоит обратить внимание на номинальный ток устройства. Если УЗО и автомат стоят в одной цепи последовательно, то автомат должен быть рассчитан на меньший ток, чем устройство защитного отключения. Это нужно, чтобы предотвратить выход УЗО из строя, так как автомат срабатывает с некоторой задержкой.

В продаже имеются дифференциальные автоматы — своего рода «два в одном», автомат и УЗО. Щит с применением электромеханических дифавтоматов становится заметно компактней, а конструкция надёжней.

Использование УЗО в помещениях со старой проводкой часто бывает не оправдано. Из-за обветшалых цепей происходят неконтролируемые утечки токов, что вызывает частые «холостые» срабатывания УЗО. Если имеется потребность в защите, но поменять проводку нет возможности, можно установить розетки со встроенным УЗО, хотя они, конечно, очень недёшевы.

Разводка

Разводка проводов производится в соответствии с планом размещения розеток, выключателей, стационарных приборов и элементов освещения.

Розетки дома следует разделить на группы по несколько штук, все они будут подключаться кабелем сечением 2.5 мм 2 от распределительной коробки. За каждую такую группу будет отвечать свой автомат (16 — 25 А), их количество зависит только от площади дома и того, сколько всего запланировано розеток. Как правило, в одну группу попадают розетки определённой комнаты, но не всегда.

В трёхфазной сети группы и нагрузку распределяют на каждую линию равномерно, для сохранения симметрии фазного напряжения.

Освещение каждой комнаты также коммутируется в отдельных ответвительных коробках. Для адекватной защиты светильников от перегрузок автоматы применяют от 3 до 10 ампер.

Кабели, идущие от щита к распределительным коробкам и конкретным потребителям, размещаются в гофрированном пластиковом или металлическом рукаве.

В последнее время выполняется в основном только скрытая проводка в штробах минеральных оснований и в полостях каркасных конструкций. Основную массу проводов ведут по потолкам, прикрепляя их специальными пластиковыми клипсами, хомутами. Все электрические магистрали легко скрываются в межпотолочном пространстве натяжных или, к примеру, гипсокартонных потолков. Возможно устройство проводки в бетонных стяжках с соблюдением некоторых технологических норм.

Штробы, по которым проводники опускаются к розеткам и выключателям должны быть строго вертикальными, если необходимо они могут поворачивать только под прямым углом. Следует в обязательном порядке делать план прохождения проводов в стенах, особенно если имеется горизонтальная составляющая пути. Это гарантирует сохранность проводника от перебивания при монтаже каких-либо навесных конструкций.

Местоположение ответвительных коробок также рекомендуется обозначать на плане, ведь они будут зашпаклёваны и заклеены обоями. Коробки должны располагаться ниже подвесных потолков, доступ к ним нельзя перекрывать мебелью или другими массивными конструкциями. Как правило, их устанавливают в коридорах над межкомнатными дверьми.

Провода, приходящие в распределительные коробки, зачищаются от изоляции и коммутируются с помощью сварки, клемм, СИЗов.

Особого отношения требуют к себе кабели слаботочных потребителей (телевизионные, интернет-провода, охранные, звуковые, телефонные). Во избежание помех их нельзя прокладывать в непосредственной близости от силовых магистралей, тем более в одной гофре с розеточными проводами.

Розетки, выключатели, вывода

Перед началом монтажа электропроводки расположение розеток, выключателей и выводов должны быть точно определены и указаны в плане. Главное требование заключается в том, чтобы они были легкодоступны и функциональны.

На данный момент стандартом считается размещение выключателей на высоте 900 мм от пола, розеток — в районе 200 — 300 мм. На рабочей стене кухни розетки устанавливают не ниже 900 мм, так как столешница располагается на высоте 850 мм. Для некоторых стационарных потребителей розетки устраивают на нестандартной высоте (ЖК-телевизоры, водонагреватели, встраиваемая в мебель техника).

Установочные коробки для выключателей размещают на расстоянии более 100 мм от черновых дверных проёмов, со стороны ручек. Так их не будет перекрывать обналичка или открытое дверное полотно.

Очень внимательно следует подойти к расчету общего количества розеток, тогда в будущем не придётся нагромождать опасные многоэтажные конструкции из тройников и удлинителей.

Нельзя забывать об уличных розетках, ведь очень часто просто необходимо подключить на улице какой-либо прибор: насос для полива, минимойку для автомобиля, электроинструмент, магнитолу и т.д.

Естественно, розетки нужно применять с контактом заземления.

Для ванных комнат используют розеточные механизмы с защитным кожухом и пластиковыми шторками закрывающими проводники. Они имеют маркировку степени защиты IP44 или IP55. Специальные безопасные розетки есть для детских комнат и для улицы.

Некоторые бытовые приборы для подключения имеют клеммы вместо штепсельных вилок (кондиционеры, регуляторы тёплого пола, варочная поверхность, кухонная вытяжка…). Для них предусматривают не розетки, а выводы проводов из стены необходимой длины и сечения.

Резервное электроснабжение

В частном доме в отличие от городской квартиры имеется возможность интегрировать в систему электроснабжения источники аварийного электропитания. Это могут быть дизельные, газовые, бензиновые генераторы. При недостатке мощностей или сбоях в общих сетях, они запускаются автоматически или вручную. Генераторы располагают на подготовленных площадках снаружи помещений в специальных кожухах или в подсобных строениях.

Всё большее распространение получают альтернативные источники электроэнергии, такие как ветрогенераторы, гелиосистемы.

Если основное электропитание не соответствует нормам (в загородных электросетях нередки отклонения частоты, провалы напряжения, высокочастотный «шум»), то система резервного электроснабжения может включать в себя стабилизаторы, инверторы — устройства, улучшающие качество электроэнергии.

Турищев Антон, рмнт.ру

Поговорим о самом главном в автономном и резервном электроснабжении

Современный человек привык жить с комфортом и удобствами. Действительно, почему бы не пользоваться всеми благами цивилизации, которые даёт нам наука? Что можно «извлечь из природы» для блага своей семьи, если дом на природе стоит, что называется, в «чистом поле»? Насколько реально закрывает все потребности автономное электроснабжение от возобновляемых источников энергии?
Можно ли рассчитывать на настоящее подспорье в электроснабжении и тем кто имеет сетевое 220 В, но хочет иметь резервное электропитание на случай вполне вероятных катаклизмов (как местного масштаба, так и глобальных)? И при этом, пока нет «катаклизмов», такой предусмотрительный хозяин (а удача любит подготовленных!) просто желает использовать приоритетно солнечную энергию (а может и энергию ветра), обеспечивая зелёную экологию и почти забывая о счетах за электричество.

И самое главное, - какие конкретно решения применять наиболее эффективно?

В этой статье мы попробуем кратко ответить на эти вопросы, благо, наша компания (МикроАРТ) занимается разработкой, производством и продажей электронных устройств, необходимых для систем автономного электроснабжения, и имеет самый большой в России опыт по данной тематике (когда мы начинали, то долгие годы были здесь практически первыми и единственными).
Мы расскажем даже о том, о чём не знают, или не хотят знать (т.к. это требует дополнительных усилий при установке) профессиональные «установщики солнечных электростанций» из расплодившихся благодаря растущему спросу, как грибы, сотен новоиспечённых компаний.

Начнём с выдержки из письма реального человека:

Есть у меня дача. Когда 2 года назад мы ее покупали нам, как водится, обещали что буквально через месяц начнутся работы по установке столбов электричества и оно самое будет уже вот-вот... Но вот прошло уже 2 и обещания так и продолжаются. За прошлый сезон я построил на участке дом и почти доделал забор. Для всего этого приобрел генератор 2КW, который прекрасно справлялся с любым инструментом. Кроме сварки конечно. Жене очень понравилось, как я всё там сделал и этим летом она хотела бы там пожить с ребенком. Но вот самое плохое что холодильник от генератора очень расточительно питать. Расход около литра в час, это как-то слишком.
Многие рекомендовали мне заказать солнечных батарей. Это не очень дорого и летом от них есть толк. Куплю автомобильные аккумуляторы 2х100Aч. По расчетам на выходные должно хватать на освещение + холодильник с большим запасом.
А теперь, собственно вопрос - расскажите об опыте эксплуатации холодильника и др. электроприборов на солнечных батареях!

Действительно, шумный, с вредными выхлопными газами генератор, который постоянно «кушает» - это совсем не вершина научной мысли. Отдых по соседству с ним, может доставить неудовольствие не только хозяевам, но и соседям.
Хорошие решения на возобновляемых источниках энергии есть уже сегодня. Многое, конечно, зависит от бюджета, который выделяется, и совсем уж ужимать его – чревато. Как известно - «скупой платит дважды»! Можно конечно купить одну-две солнечных панельки, маленький и простенький солнечный контроллер к ним, маленький автомобильный аккумулятор (или вообще снять старый с авто), поставить дешёвенький маломощный автомобильный инвертор – и радоваться свету от светодиодных лампочек. Только это не обеспечит полноценного комфортного проживания, да и срок службы этих компонентов будет невысок. Мы будем рассматривать полноценные современные (причём лучшие!) решения, обеспечивающие комфорт не хуже, чем в городской квартире.
Опишем основные шаги по решению проблемы за счёт Солнца (тема по ветрогенераторам раскрыта в статьях на www.vetrogenerator.ru) и приведём примерные текущие цены (при курсе 1 долл = 36 руб).


1. Необходимо грамотно выбрать и купить солнечные панели (СП) с солнечным контроллером, а так же, грамотно, и особым образом, их установить

А) Первое, что мы утверждаем, - для хоть какого-нибудь комфорта в загородном доме, самая минимальная суммарная мощность СП должна быть не менее 600 Вт. Например, 3 солнечные панели по 24 В 200 Вт (если панели высококачественные цена вопроса приблизительно 35000 руб). А правильней, для сезонного проживания, ставить - от 1000 до 2000 Вт СП. Если проживание будет и в осенне-зимний период – тогда от 2000 Вт, но лучше, если конечно позволяют финансовые возможности, - от 4000 Вт.

Б) Второе – необходимо обеспечить условия, чтобы солнечные панели работали и в пасмурную погоду. Для этого нужно соединить их так, чтобы их общее напряжение было высоким , если рассматривать номинальное напряжение АКБ и сборки солнечных панелей, то последняя должна иметь напряжение в 1,5 – 2 раза выше чем напряжение АКБ. Тогда и при затенении облаками всё равно напряжение от них будет достаточно высокое для заряда аккумуляторов (АКБ). Но отсюда вытекает требование и к солнечному контроллеру – он должен быть сделан по технологии МРРТ. И не просто МРРТ, а высококлассным, способным работать с высоким напряжением на входе (минимум 100 В, но ещё лучше 200 или 250 В). Естественно, высококлассный контроллер умеет работать с любыми АКБ на выходе, соединёнными на любые напряжения (12 В, 24 В, 48 В – самым оптимальным для наших целей является 48 В, тем более, что и эффективные ветрогенераторы обычно выполнены на это напряжение). И ещё потому, что стоимость солнечного контроллера зависит от силы тока, которую он способен обеспечить. Получается, что если контроллер до 50 А подключить к АКБ с напряжением 24 В, то он может выдать мощность до 50 А* 24 В = 1,2 кВт. А если этот же контроллер 50 А использовать в системе на 48 В, то уже 2,4 кВт.
Дальнейшее наращивание напряжения массива солнечных панелей (300 В и более) обычно нецелесообразно, т.к. ведёт к существенному уменьшению КПД. И так же монтаж СП становится всё более опасным. Даже 150 В постоянного напряжения опасно для жизни и требует тщательного соблюдения техники безопасности при монтаже панелей и подключению к контроллеру.
Такие солнечные контроллеры (например, мощный 100 А солнечный контроллер имеет возможность подключения массива солнечных панелей до 200 В или 250 В) обычно допускают подключение до нескольких киловатт солнечных панелей и стоят они дороже обычных (цена 25000 – 30000 руб). Сравнительный тест разных МРРТ контроллеров премиум-класса можно посмотреть .

Итак, зима, опыт.
1. Вертикальное расположение СП себя оправдало. Липкий снег намерз на крышу кучей даже на южной стороне. Если б СП висели не на стене, то, минимум, неделю б они просто были закрыты от солнца! Чистить их от льда как не знаю - не пробовал. А с вертикальной плоскости все стекло до мороза, только внизу у перехода в рамку немного налипло - и СП работали.
2. Два направления (у меня, пока, - восток и юг), тоже хорошо себя показали. Солнце бывает утром, а днем - тучи, и наоборот. То есть солнце ловлю почти всегда, если оно есть.

Другой человек, из Питера, пишет:

Мои (панели) в мае 2011 года были переустановлены на юго-восток и юго-запад. Разницы в суммарной суточной выработке не заметил, а вот время генерации увеличилось и значительно. Был вынужден установить именно так из-за строительства забора. Работы начинались в районе 8-ми утра и к моменту начала приличной генерации при однонаправленной установке аккумуляторы успевали высосать до 48 В. После изменения азимута установки положение в корне изменилось.


Действительно, в средней полосе России и севернее, если речь идёт о круглогодичном проживании , солнечные панели разумней крепить вертикально и желательно с небольшой ориентацией по сторонам света (например, половину панелей отвернуть от южного направления на 30 градусов на юго-восток, а другую половину - на 30 градусов на юго-запад). Можно и по сторонам дома раскидать, если такие условия есть (не обязательно гнаться за точным соответствием углов).
Вертикальная установка СП хороша для снежных зим (и вообще это благотворно влияет на срок службы панелей, который становится почти вечным, а так же на их чистоту, а значит - и большую отдачу). Главное же - ориентация панелей по сторонам света позволяет растянуть длительность поступления энергии в светлое время суток (это даёт возможность больше использовать электричества без расхода аккумуляторов, да и сами аккумуляторы, в этом случае, лучше заряжаются, т.к. они требуют длительных зарядов малыми токами).
И не надо слепо копировать Европу или Америку – они у себя правильно делают, ставя СП на пологие крыши и все направлением на юг. Широта у них другая и/или снега почти нет. И главное - для них важна максимальная мощность вырабатываемая СП. Причём там не важно, что она максимальна в полдень, когда потребителей электропитания очень мало. Потому что у них разрешена закачка энергии в сеть, что в корне меняет дело, ведь эта энергия не пропадёт (впрочем, об этом мы ещё поговорим в конце этой статьи).
Общее поступление энергии при вертикальном расположении панелей, а так же при их ориентации по сторонам света, будет немного меньше, чем при южной ориентации и под оптимальным углом для конкретного времени года на конкретной широте. Однако, этот переизбыток энергии приходился бы на 2 – 3 дневных часа, т.е. тогда, когда энергии и так полно, и когда её девать некуда, и толку от этого нет.
При выполнении условий Б) и В), получаем, что панелей всё же должно быть минимум две цепочки. Если для АКБ на 48 В, то по 3 шт (каждая на 24 В, а если панели по 12 В – то по 6 шт) соединённых последовательно. Т.е. мы получаем две разнонаправленные последовательные цепочки. Например, из панелей 24 В 200 Вт получается нужно минимум 600+600=1200 Вт. Если нужна ещё большая мощность, то цепочки внутри каждой группы надо подключать параллельно. Каждую группу солнечных панелей, если её мощность большая, можно подключить через свой солнечный контроллер на одну группу АКБ (т.е. получается два контроллера).
Два солнечных контроллера, в случае разнонаправленных групп панелей, могут быть так же полезны, т.к.:
- общий КПД будет немного выше, чем у одного;
- это позволят задействовать любое количество СП, которое может диктоваться конструкцией дома (крышей или стенами, на которые планируется повесить СП), например, установить 7 шт. (3 шт. на один канал, 4 шт. – на другой);
- повысится общая надёжность системы (выход из строя одного контроллера, или одного канала в контроллере, не будет так фатален).
Если солнечный контроллер будет всё же один, а СП направлены на разные стороны света, то их надо «развязать» друг от друга диодами.

Г) Панели лучше покупать крупные (мощностью от 200 Вт) и вешать их высоко . Это особенно важно, если речь идёт об участках, на которых возможно воровство (крупные панели украсть очень затруднительно). Кроме того, чем крупнее солнечная панель, тем чуть выше её КПД, но и тем труднее её перевозить, и, особенно, - монтировать на высоте.
Самые лучшие по КПД и по долговечности солнечные панели - это монокристаллические солнечные панели . Но и стоят они немного дороже поликристаллических. Ещё дороже чёрные моно панели (внутреннее заполнение имеет чёрный цвет, алюминиевая рама тоже анодирована в чёрный цвет). Казалось бы, эта красота приводит к лишнему нагреву СП, а значит к некоторому падению её эффективности (доли процента от общей эффективности). Тем не менее, при ярком солнце, энергии обычно всё равно переизбыток, а вот в осенне-зимний период, чёрные панели намного лучше самоочищаются от снега и обледенений.
Для обеспечения естественной вентиляции между панелями и основанием оставляют воздушный зазор 5 – 10 см (панели, например, можно крепить на алюминиевых уголках, которые прикручиваются к основанию через стойки с надетыми алюминиевыми трубками 5 – 10 см длиной).

Д) В случае, если на доме и на участке места мало , и если воровство маловероятно, свою максимально возможную выработку энергии солнечные панели могут выдать, если они установлены на трекер (он автоматически поворачивает СП вслед за Солнцем). Посмотреть подробнее и купить можно .

Другой возможный вариант установки солнечных панелей – прямо в заборе.



Причём и при таком варианте установки СП можно обеспечить разнонаправленность по сторонам света – надо просто сложить «гармошкой» все панели. Появляется дополнительная эффективность за счёт отражения света от одних панелей на другие.
Достаточно просто устанавливаются солнечные панели и на металлическом каркасе, который тоже, если позволяют условия, можно сделать немного разнонаправленным или установить на нём солнечные панели «гармошкой».



2. Необходимо обеспечить автоматическую работу большинства электроприборов исключительно днём

Мы уже позаботились о том чтобы «растянуть» световой день (расставив СП разнонаправлено по сторонам света), мы обеспечили поступление энергии и в пасмурную погоду (соединяя солнечные панели последовательно в высоковольтные цепочки и применяя высококлассный МРРТ солнечный контроллер). А теперь надо подумать, как сделать так, чтобы основная масса затратных потребителей включалась днём. Тогда оставшееся на вечер и ночь небольшое количество электроприборов (светодиодные лампочки, телевизор, компьютер и т.п.) не сумеют сильно разрядить аккумулятор и последний, именно благодаря этому, будет служить десятилетиями (тут конечно многое зависит от конструкции АКБ).
Понятно, что начинать стирку мы будем с 12, и делать уборку пылесосом примерно в тоже время. Но некоторые вещи можно и автоматизировать, что крайне важно.
Так, например, надо бы чтобы такое энергозатратное устройство как бойлер (водонагреватель для душа и т.п.) подключался к автономному электроснабжению 220 В лишь днём, когда светит солнце (или когда напряжение на АКБ ещё высоко, т.е. они не сильно разряжены). Ведь его бак изнутри изолирован от среды толстым слоем пенопласта и способен очень долго удерживать тепло (до глубокой ночи, как минимум). Так же удобно, чтобы кондиционер включался именно днём. А кому-то и обогреватель в дневные часы не помешает (например весной/осенью, если панелей много).
Ещё более важно автоматическое подключение и отключение от автономномного электричества холодильника. На первый взгляд может показаться, что холодильник потребляет мало энергии - всего 150 Вт (правда при пуске - до 1,5 кВт, но это секунды и они не в счёт). Однако холодильник работает сутки напролёт и в итоге является одним из самых энергозатратных бытовых устройств. Кроме того, работая ночью, он весьма заметно разряжает аккумуляторы, что во многом является причиной быстрой потери ими ёмкости. Какие же меры можно предпринять, чтобы всего этого избежать, но при этом не лишаться благ цивилизации?

А) Опять же – необходимо применение высококлассного солнечного контроллера с технологией МРРТ (или двух таких контроллеров), но уже по другой причине. Только в подобные премиум-контроллеры встроены мощные программируемые реле (220В 3,5 кВт). Через такое реле и надо подключить холодильник и запрограммировать солнечный контроллер так, чтобы реле включалось только когда есть энергия солнца (или когда напряжение на АКБ не будет ниже, допустим, 12,3 В на 1 АКБ, что соответствует его разряду на 20 – 30%).
Бойлер (для нагрева воды) лучше подключить через другое мощное реле (если их конечно в контроллере несколько), т.к. одно реле не справится по мощности одновременно и с пуском холодильника и с бойлером, да и приоритет у холодильника можно выставить выше. Когда будет пасмурно и на всех энергии не будет хватать, то контроллер оставит подключённым только холодильник.
О наличии в контроллере подобных программируемых реле можно узнать, например, из сравнительного теста разных МРРТ контроллеров премиум-класса, или посмотрев их паспорта с характеристиками. Разработанные нашими специалистами солнечные контроллеры КЭС DOMINATOR MPPT и КЭС PRO MPPT имеют 3 таких встроенных реле, причём все они рассчитаны на напряжение до 220 В и мощность подключаемых к каждому из них устройств до 3,5 кВт.
При необходимости, какое-то из этих реле можно запрограммировать на автоматическое включение генератора, или на включение сигнализации.
Возможные алгоритмы программирования реле (кое-что из списка ниже в процессе доработки прошивки, которая, периодически обновляется на нашем сайте):
- эти реле должны включаться по определённому приоритету (есть критически важная нагрузка, а есть второстепенная);
- по напряжению АКБ;
- по мощности, которую могут в данный момент выдать солнечные панели;
- по времени;
- по тому, есть ли заряд АКБ от других источников (от генератора через МАП, или от ветрогенератора - для него у контроллера есть измерительное кольцо), или есть ли 220 В на входе МАП (т.е. если МАП транслирует к примеру 220 В от генератора, то почему бы холодильнику не работать?). Чтобы наш солнечный контроллер узнал, что на входе МАП появилось 220 В - мы соединяем его с нашим МАП дополнительным шнуром и они "общаются".

Б) Так как холодильники используют все и так как это один из самых много потребляющих электроприборов, поговорим о принципах их выбора для питания от солнечных панелей более детально.
Для условий автономии и малого потребления энергии, холодильник должен быть класса энергосбережения А+ + + (в крайнем случае - А+ +) и стоять в прохладном месте (и радиатор сзади холодильника должен свободно проветриваться).
Подходящий объем и способность поддержания необходимой минусовой температуры – это главные критерии для морозильной камеры. При разной температуре продукты могут храниться довольно долгий промежуток времени чтобы сохранить продукты в течении недели нужна температуры -6° С. Если морозильная камера поддерживает температуру -12° С, то это гарантируемое сохранение продуктов питания сроком до одного месяца. Если температурный режим -18° С - продукты могут храниться в холодильнике около трех месяцев.
Ну, а если может поддерживаться температура -24° С , то возможно хранение продуктов 6-12 месяцев. Нам лучше всего подходит последний вариант холодильника.
За счёт качественной термоизоляции многие холодильники способны сохранять достаточно низкую температуру внутри даже при отключении электроэнергии. Время сохранения холода – важнейший параметр холодильников . Это время, в течении которого, в случае отключения питания, в холодильнике будет сохраняться температура, достаточно низкая для того, чтобы скоропортящиеся продукты нормально сохранились. Чем больше это время – тем лучше термоизоляция холодильника и тем больше он подходит для условий, в которых возможны перебои с электроснабжением.
Конечно, в холодильнике надо установить самые низкие температуры и в морозилке и в общей камере , какие только возможны. Это позволит продержаться холоду внутри может и не одну ночь.
Если вы будете соблюдать несколько простых правил эксплуатации холодильника, он будет потреблять меньше электроэнергии. Не ставьте в него продукты, которые выше комнатной температуры. Старайтесь не оставлять открытыми двери. И выберите место для своего холодильника как можно дальше от батареи и кухонной плиты. Желательно что бы прямые солнечные лучи на него не попадали.

Для примера, рассмотрим три почти идеальных для автономии (и не только) холодильника:

Liebherr CTPsl 2541

Морозилка: сверху; Кол-во камер: 2; Объем холодильника (л): 191; Объем морозилки (л): 44; Общий объем (л): 235; Управление: поворотные переключатели; Кол-во компрессоров: 1; Контуров охлаждения: 1; Температура морозилки: до -24°C; Время сохранения холода (ч): 22 ; Мощность замораживания (кг/сутки): 4; Функции: Авторазморозка; Перевешивание дверей; Быстрая заморозка; Быстрое охлаждение; Антибактериальная защита; Скрытые дверные ручки; Класс энергопотребления: A++ ; Уровень шума (дБ): 40; Цвет: нержавеющая сталь; Габариты (см): 140х55х63; Цена от 20000 руб.

Electrolux EN 3613 AOX

Морозилка: снизу; Кол-во камер: 2; Объем холодильника (л): 245; Объем морозилки (л): 90; Общий объем (л): 335; Управление: сенсорное; Температура морозилки: до -24°C; Время сохранения холода (ч): 20 ; Функции: Авторазморозка; Индикатор закрытия дверцы; Перевешивание дверей; Зона свежести; Быстрая заморозка; Быстрое охлаждение; Антибактериальная защита; Дисплей; ; Цвет: нержавеющая сталь; Габариты (см): 185х60х67; Цена от 33000 руб.

Bosch KGE 49AI40

Морозилка: снизу; Кол-во камер: 2; Объем холодильника (л): 296; Объем морозилки (л): 112; Общий объем (л): 408; Управление: кнопочные переключатели; Кол-во компрессоров: 1; Контуров охлаждения: 2; Температура морозилки: до -24°C; Время сохранения холода (ч): 44 ; Мощность замораживания (кг/сутки): 15; Функции: Авторазморозка; Индикатор закрытия дверцы; Перевешивание дверей; Зона свежести; Быстрая заморозка; Быстрое охлаждение; Режим отпуска; Антибактериальная защита; No Frost: морозильная камера; Класс энергопотребления: A+++ ; Уровень шума (дБ): 38; Цвет: нержавеющая сталь; Габариты (см): 201х70х65; Вес (кг): 98; Цена от 25000 руб.


В) А если солнца не будет несколько дней или недель, и энергии станет катастрофически не хватать, что тогда делать? Тогда для нашего чудо-холодильника есть запасной вариант, ему надо открыть, так сказать «второе дыхание».
Первое что приходит на ум – хранить в морозилке несколько килограмм свинца. Масса у него большая, холода при -24° С должен набрать много… И отдавать его, медленно нагреваясь в хорошо изолированной морозилке он тоже будет долго.
Но вот беда - свинец вредно хранить рядом с продуктами, как-то это негигиенично, если не сказать - токсично.
Золото – вот гораздо лучший вариант! Оно тяжелее свинца и совершенно безопасно в санитарном плане. Так что если вы раздумываете, куда бы пристроить пару другую слитков золота (чем больше, тем лучше) – в морозилке им самое место. И воры никогда не догадаются!
Однако, к сожалению, не у всех имеются свободные слитки золота, поэтому придётся довольствоваться тем, что уже предлагается для сумок холодильников.
Нет, сухой лёд нам не нужен. Да и устарел он уже морально.
Различают несколько видов современных аккумуляторов холода (они продаются в пластиковых ёмкостях или в герметичных пакетах, срок их эксплуатации не ограничен):

гелевый – поддерживает температуру от -70° С до +80° С, представляет собой гелевый раствор, запаянный в герметичный прочный полимерный пакет (до -20° С), или твёрдую ёмкость (до -70° С);


водно-солевой – наиболее распространенный, стандартный вариант – пластиковые брикеты с солевым раствором, перед использованием помещающиеся в морозильную камеру и способны поддерживать температуру от -20° С до +8° С;

силиконовый – поддерживает температуру от 0° С до -2° С, зато в течение 7 дней. Основное преимущество силиконовых аккумуляторов перед водно-солевыми и гелевыми – способность поддерживать постоянную температуру около нуля в течение длительного периода (до 7 дней).

Стоят эти аккумуляторы холода недорого – от 100 до 1000 руб. Гелевые хладоэлементы, по сравнению с солевыми, обладают значительно большей теплоемкостью и способны работать при очень низких отриательных температурах. Зато солевой элемент можно приготовить и самостоятельно. При этом, чем концентрированней будет соляной раствор, тем ниже будет его минусовая точка таяния. Максимальная концентрация соответствует – 20° С (ниже - соль выпадает в осадок). Именно точка таяния, т.е фазового перехода из твёрдого состояния в жидкое, является точкой «упора», т.к. для фазового перехода необходимо много энергии. Эта температура и является точкой «удержания» хладагента.
Силиконовый хладагент – самый эффективный и долгоиграющий. Но его температура удержания (от 0° С до -2° С) скорее имеет смысл в общей камере, чем в морозилке.
Итак, в условиях автономии, помимо всего вышеперечисленного, в хорошем холодильнике, в морозилке необходимо всегда держать несколько брикетов гелевого хладагента (модель до -70° С) и несколько – силиконового . В случае длительной нехватки энергии силиконовые брикеты надо переложить в общую камеру, а гелевые оставить в морозилке.
После подачи энергии (появлении Солнца или включении генератора или др.), силиконовые брикеты следует опять переложить в морозилку.
Напоследок отметим, что существуют и холодильники, работающие от постоянного напряжения 12 В и/или 24 В, а так же холодильники, работающие от газовых баллонов с пропан-бутановой смесью. Однако оба эти решения не экономичны, имеют весьма низкий КПД (т.к. работают от низких напряжений и/или основаны на адсорбционном методе охлаждения), обладают слабыми параметрами самих холодильников и высокой стоимостью (особенно работающие от газа – 45000 руб за небольшой холодильник с общим объёмом 285 л).
Когда-то очень давно, адсорбционные холодильники выпускались и просто для семьи, для дома. Однако были вытеснены компрессорными, т.к. проигрывали по всем параметрам, кроме бесшумности. Да и бегать, пусть и раз в 3 недели, с газовыми 50 л баллонами, комфортным времяпровождением не назовешь. Впрочем, когда другого выхода нет, допустим в походных условиях, тогда и такой холодильник подойдёт.

Подведём итог двух предыдущих параграфов более наглядно. Ведь лучше один раз увидеть, чем сто раз услышать.

Итак, для начала сравним на графиках работу обычной солнечной системы и «правильной» солнечной системы с установленной мощностью СП 1500 – 2000 Вт в жаркий июньский солнечный день.



А). В обычной солнечной системе (график А) все СП установлены под углом 45 градусов к горизонту направлением на юг и соединены в соответствии с напряжением АКБ (т. е. серьёзного превышения напряжения СП над напряжением АКБ - нет). Никаких управляющих нагрузками реле в солнечном контроллере тоже нет.
На графике мы видим, что пиковая мощность СП достигается к 13 часам дня, и мы видим что, по меньшей мере, 40% солнечной энергии не используется (а в реальности, обычно не используется ещё больше).
Так же очевидно, что те 60% солнечной энергии, что используются, в основном идут на заряд большой ёмкости АКБ. Емкость должна быть именно большой (особенно, если мы хотим разряжать её только на 30%, что значительно увеличивает срок их службы), потому что именно от неё всё электрооборудование питается вечером, ночью и утром.

Б). При использовании высоковольтной солнечной системы с вертикально установленными СП и ориентированными на юго-восток и на юго-запад мы видим, что максимальная мощность СП упала примерно на 30 – 40%, и при этом эффективное время получения солнечной энергии увеличилось. Кроме того, видно, что за счёт того, что холодильник, бойлер и другое электрооборудование принудительно включается только днём, оно и потребляет в основном только солнечную энергию, а не энергию прошедшую преобразование в АКБ (кстати, у кислотных АКБ КПД около 80%). Значит, ёмкость АКБ может быть намного меньше, а ведь это - дорогой расходный элемент. Видно, что при грамотном построении системы и программировании включения реле, использование солнечной энергии может достигнуть 90% и более.

Теперь сравним на графиках работу обычной солнечной системы и «правильной» солнечной системы с установленной мощностью СП 1500 – 2000 Вт в пасмурный июньский день.



В). В обычной солнечной системе (график В) из-за облаков напряжение от СП в среднем опустилось ниже, чем у АКБ и заряд или прямое потребление энергии невозможны. Хотя иногда небо может немного проясняться и в такие моменты (судя по графику, солнце появилось после 17 часов) появится немного энергии. В целом же, обычная система в такие дни функционирует или вычерпывая по максимуму ранее накопленную энергию из АКБ (что сокращает их ресурс), или во время работы генератора, который заодно и подзаряжает АКБ.

Г). При использовании высоковольтной солнечной системы с вертикально установленными СП и ориентированными на юго-восток и на юго-запад, мы видим, что максимальная мощность СП упала примерно в 3 – 4 раза от установленной мощности СП, и при этом эффективное время получения солнечной энергии по-прежнему немного увеличено.
Т.к. СП соединены последовательно на высокое напряжение, напряжения на входе высокоэффективного солнечного контроллера хватает для преобразования энергии, которая направляется им на заряд АКБ и на работу самого необходимого электрооборудования.
Видно, что за счёт того, что холодильник и бойлер принудительно включается только днём, а остальное необязательное оборудование, из-за низкого приоритета вообще не включается, даже этой уменьшенной энергии хватает. А значит, АКБ по прежнему почти не используются, даже если Солнце вообще не появляется. Использование слабой солнечной энергии в этом случае приближается к 100 %.
Зимой ситуация ещё ухудшится, т.к. световой день сократится практически в 2 раза и пасмурность может стать более глубокой (ноябрь-декабрь). Отсюда вытекает, - что если нужно круглогодичное автономное электроснабжение и нет желания хотя бы пару месяцев раз в 3 дня включать генератор, то мощность СП надо ещё удвоить (до 4000 Вт). Тогда график Г, будет соответствовать осенне – зимнему периоду.
Для осеннее-зимнего периода ориентация СП не так важна, т.к. угол прохода Солнца сужается, да и при пасмурности (а в этот период она преобладает) направление СП почти не важно. Поэтому, для круглогодичной эксплуатации, можно ограничиться установкой всех СП вертикально направлением на юг.

Вывод: получать энергию при облачности и, тем более, при пасмурности (и особенно это важно зимой) - очень и очень надо. Слишком много в России таких дней. Мы не Испания и, тем более, не Африка, например, в Москве в году всего 75 солнечных дней, - поэтому это очень важно! Тут вопрос стоит «ребром» - или результат есть (хотя при облачности отдача СП падает до 3 раз меньше номинала, при глухой пасмурности - до 6 раз), или результата в такое время нет вообще – если применять дешёвые солнечные контроллеры (в том числе МРРТ), использовать мало СП, соединять их на низкое напряжение, устанавливать под углом там, где снег зимой - норма.
Благодаря предложенным мерам, можно наращивать мощность солнечных панелей, при этом энергия будет эффективно утилизироваться, а так же иметь солнечное электричество в любое время года почти в любом уголке России. Использовать эту мощность можно как напрямую для отопления, нагрева воды и "теплого пола", так и посредством теплового насоса, и при этом не подвергать аккумулятор жесткой эксплуатации.

3. Необходимо приобрести качественный инвертор

Что касается инвертора, то он должен быть с синусом на выходе 220 В, с высоким КПД (96%), с малым током потребления на холостом ходу (ХХ = 0,3 - 0,4 А), с большой перегрузочной способностью, а так же с расширенными функциональными возможностями. Желательно, чтобы инвертор умел и быстро заряжать АКБ от сети или генератора.
Для холодильника хватило бы мощности инвертора 0,5 - 1 кВт, но т. к. есть и другое электрооборудование, обычно оптимальным является диапазон мощностей от 3 до 12 кВт. Напряжение инвертора и АКБ надо выбирать минимум на 24 В, но лучше на 48 В.

Нашей компанией был разработан инвертор МАП (модификации PRO, HYBRID, DOMINATOR) – по качеству и возможностям он находится на уровне лучших мировых брендов, при многократно меньшей цене. Разработку первого инвертора мы начали в далёком 1999 году, но только к 2012 году прибор достиг совершенства и надёжности мирового уровня. Естественно, у него высокий КПД 96%, высокая перегрузочная способность и малый ток ХХ до 0,4 А. У него вообще очень малые электромагнитные излучения, т.к. применён трансформатор в виде дорогого тора.
Вы, вероятно, спросите – что такого в этих «мировых брендах» кроме имени (перечислим их – Xtender, SMA, Xantrex, Victron, OutBack ), да и то, известному лишь в кругах профессионалов? А китайские инвертора стоят немного дешевле МАП!
Отличия, кроме именитости, есть, и они серьёзные. Только у «мировых брендов» (а теперь и у МАП) есть очень богатые возможности по функционалу и режимам; обеспечена высокая надёжность (за счёт применения качественных дорогих, а не дешёвых комплектующих, и за счёт тщательного тестирования каждого прибора). Только они, как и МАП, основаны на похожей схемотехнике и на дорогих тороидальных трансформаторах и дросселях. Всё вышеперечисленное имеет заметно большую себестоимость, а следовательно и более высокую розничную цену. И поэтому, вышеперечисленного нет не только у китайских, но и у менее именитых европейских и американских инверторов.

Мы не будем расписывать все возможности МАП (желающие, могут с ними ознакомиться здесь ). Расскажем лишь о некоторых важных для автономной жизни особенностях.
- Возможность проводного и беспроводного соединения с компьютером (разработано несколько вариантов ПО, умеющих и оповещать (в том числе по СМС), и строящих графики для слежения за параметрами всей энергосистемы). Поэтому, например, ваши АКБ не останутся надолго разряженными без вашего ведома, и, как следствие, не «прикажут долго жить». И дом не заморозится, если что…
- Работа с обычными недорогими генераторами высокой и относительно малой мощности (т.е. низкого качества, с выбросами напряжения) - эта возможность большая редкость среди лучших мировых брендов. А значит - и инвертор не сгорит, и заряд будет хороший и быстрый, и генератор не обязательно должен стоить 250000 руб.
- Режим поддержки сети (или генератора): автоматическое "добавление" мощности инвертора к сетевой (или к мощности генератора) и/или автоматическое временное уменьшение заряда при пиковых нагрузках (модификация МАП HYBRID и МАП DOMINATOR) - эта возможность есть только у лучших мировых брендов. Значит там, где требовался бы, допустим, генератор 6 кВт, вероятно, справится и генератор 3 кВт – в нужные моменты инвертор ему поможет. А ведь это не только экономия на цене генератора. Это и постоянная экономия на топливе!

4. Немного об аккумуляторных батареях

Общеизвестно, что срок службы АКБ сильно уменьшается в зависимости от потребляемого от неё тока. Для уменьшения токов и глубины разрядов можно наращивать ёмкость АКБ, при этом уменьшая допускаемый разряд.
С другой стороны, с целью снижения совокупной стоимости владения собственной электростанцией, необходимо использование аккумуляторов как можно меньшей емкости (всё же ресурс их ограничен).
За счёт реализации в солнечных контроллерах КЭС DOMINATOR и КЭС PRO системы управления нагрузками, свободная энергия от СП в основном идет непосредственно на внешних потребителей, что и позволят снизить ёмкость АКБ.
Для загородного дома 200-300 м² в средней полосе России достаточно общей ёмкости аккумуляторов 200 Ач * 48 В, или, что одно и тоже 400 Ач* 24 В. При этом мощность солнечных панелей должна быть 2000 – 4000 Вт (минимум для сезонной эксплуатации - 1200 Вт).
При такой мощности СП аккумуляторы всегда будут заряжены, а свободная мощность от солнечных панелей будет автоматически распределяться между внешними потребителями.
Практика показала, что для автономного электроснабжения не рекомендуются герметизированные свинцовые АКБ, т.е. типа AGM, гелевые, OPzV. Слишком «нежные» они для тяжёлых условий автономии. Вода из них всё же постепенно теряется, а долить её невозможно. Герметизированные АКБ служат в таких условиях обычно до 2 – 3-х лет.
Имейте ввиду - срок службы при автономном электроснабжении у любых аккумуляторов в разы меньше, чем в условиях резерва (т.е. когда сетевое 220 В есть, но иногда пропадает), просто у герметизированных АКБ при автономии, он вообще очень мал.
Поэтому, в зависимости от бюджета, у автономщика небольшой выбор:

1. Автомобильные стартерные , открытого типа.
Цена общей ёмкости 190 Ач*48 В (составленной из 4 шт. 190 Ач*12 В соединённых последовательно) около 28000 руб. Срок службы в автономии около 2 - 4 лет, или до 200 циклов заряд/разряда на 80%.
Для меньшей степени их разряда, а значит для увеличения срока службы до 5 - 7 лет, их ёмкость можно удвоить (тогда можно настроить в инверторе допустимый разряд АКБ не более 30 %, а время автономии сильно не уменьшится).
Рекомендуем, например, производства Тюменского аккумуляторного завода. В отличии от некоторых других, они соблюдают технологию, а не экономят на свинце. Вы можете примерно понять качество АКБ, если сравните их вес при одинаковой ёмкости. Естественно, лучше те, которые тяжелее.
Только АКБ с кальциевыми сплавами не стоит покупать для целей автономного электроснабжения. Гораздо устойчивее к глубоким разрядам АКБ с традиционными сурьмянистыми сплавами.
Проверять уровень электролита и доливать дистиллированную воду в каждую банку, надо не реже 1 раза в год. Об этом нельзя забывать, уровень электролита не должен опуститься ниже указанной границы – иначе произойдёт ускоренная деградация пластин АКБ.

2. Тяговые панцирные глубокого разряда (АКБ Микроарт). Цена общей ёмкости 210 Ач*48 В (составленной из 24 шт. 210 Ач*2 В соединённых последовательно) около 72000 руб. Срок службы в автономии около 10 лет, или до 1500 циклов заряд/разряд на 80%.

Можно выбрать ёмкость и на меньшее напряжение – 400 Ач*24 В. Её цена (составленной из 12 шт. 400 Ач*2 В соединённых последовательно) около 65000 руб.
При необходимости радикального снижения требований к вентиляции помещения и проверке уровня электролита - на эти АКБ можно установить специальные пробки-катализаторы для рекуперации водорода (проверять уровень электролита и, при необходимости, доливать дистиллированную воду, можно не раз год, а раз в 6 лет). С такими пробками, эти АКБ практически приближаются по необслуживаемости к герметизированным АКБ, и, при этом, обладают всеми преимуществами обслуживаемых.

3. Литий-железо фосфатные (LiFePO4) аккумуляторы относятся к герметизированным и, тем не менее, были бы идеальны для автономного электроснабжения, если бы не их цена.
Цена общей ёмкости 160 Ач*48 В, включая BMS нашей разработки (необходимый корректор заряда для таких АКБ), составленной из 15 шт. 160 Ач*3,2 В соединённых последовательно, будет около 220000 руб. Срок службы в автономии около 25 лет, или до 3000 циклов заряд/разряд на 80%.
Это не свинцовые АКБ, поэтому они относительно лёгкие и малогабаритные. За счёт их устойчивости к глубоким разрядам, общую ёмкость можно установить меньше раза в 2 по сравнению со свинцовыми АКБ (и соответственно, настроить инвертор так, чтобы он их разряжал примерно на 80%). Т.е. при построении вышеописанной системы, можно использовать ёмкость литий-железо фосфатных АКБ 100 Ач* 48 В, или 160 – 260 Ач* 24 В, что гораздо доступней.

Особенностью литий-железо фосфатных АКБ, кроме самого высокого КПД (97%), является возможность очень быстрого набора заряда (в норме - около 2 часов, что в 6 раз быстрее полного заряда других типов АКБ), и самое главное, нечувствительность к недозарядам, к глубоким разрядам и оставлению на длительное время в состоянии разряда, что рано или поздно бывает при полностью автономном проживании. Особенно, если система не умеет оповещать хозяина с помощью СМС сообщений.
Поэтому, в случае использования литий-железо фосфатных АКБ, ставить солнечные панели разнонаправлено не обязательно.
Более подробно об особенностях конструкции разных АКБ и особенностях эксплуатации их в разных условиях написано . И конечно стоит напомнить, что для полной автономии необходим генератор (лучше инверторный, можно с автоматикой САП), а так же желателен, если позволяют условия, ветрогенератор .

5. Поговорим о жизни при наличии промышленной электросети и, при этом, «под сенью солнечных панелей»… Что же выбрать, или почему – то, что «немцу» хорошо, - «русскому» смерть?

По традиции, начнём с сообщения на одном из форумов:

Я лично, совсем недавно, пришел к выводу, что лучше (перспективнее) взять сетевой инвертор (СИ), вместо MPPT контроллеров. По паспорту СИ КПД преобразования =97% и сразу энергия = 220 в дом, на потребление. А в случае с МPPT идет преобразование в контроллере, затем в батареи идет, затем в гибридном (батарейном инверторе теряется на преобразование) - потери больше. Еще один фактор - мысли на будущее: вдруг когда нибудь в России разрешат отдавать (продавать) в сеть электричество, не надо будет ничего докупать.
Кстати говоря, сетевой инвертор SolarLake 8500TL-PM может перераспределять энергию от СБ между фазами?
Также в системе будут 3 единицы Кстендера XTM 4048, по каждому на фазу. И очень важный для меня вопрос и задача, чтобы ни один киловат не уходил в сеть, не проскакивал через счетчик в обратную сторону.
…Предлагается еще один резервный вариант, дополнительно поставить MPPT контроллер с небольшим массовом СП, на случай, если АБ разрядятся. выработка СИ прекратится, а тут MPPT контроллер будет независимо заряжать АБ. Тоже хорошая мысль.

Не всем, вероятно, понятно, о чём речь в сообщении, поэтому чуть позже дадим пояснения. Но сначала отметим - человек во многом сильно заблуждается, и заблуждения сии стоят больших дополнительных денег. Причём разница в данном случае может составить около полумиллиона рублей – такова цена ошибки, переубеждать в которой богатого клиента продавцы импортной техники отнюдь не торопятся. Для более скромных покупателей изменится только порядок потерянной суммы, но суть от этого не поменяется.
Итак, сетевой инвертор (СИ) - это электронное устройство, которое представляет собой одновременно и инвертор и солнечный контроллер с технологией МРРТ. Но у сетевого инвертора совсем другая идеология, которая имеет свои истоки от других условий стран Евро-зоны, США и др. Вспомните поговорку – «То, что русскому хорошо, - немцу смерть!», ну и наоборот. И мы сейчас это докажем.
Идеология сетевого инвертора – энергию, полученную от солнечных панелей (соединённых на ВЫСОКОЕ напряжение, обычно диапазон 300 – 800 В), сразу преобразовать в переменное ВЫСОКОЕ напряжение 220 В и сразу подавать её в промышленную сеть, синхронизируясь с ней. Так как, напряжение на входе и на выходе высокое, можно обойтись без трансформаторов, что должно удешевлять сетевые инвертора (хотя они почему-то продаются не дёшево).
Если нагрузка в доме большая и солнечной энергии поступает немного, то она вся уходит на домашнее потребление. А если нагрузки почти нет, и Солнце жарит во всю – тогда эта энергия закачивается в промышленную энергосеть. Т.е. счётчик «крутится в обратную сторону, сматывая показания». И аккумуляторы как бы не нужны, – вместо них огромная электросеть. В неё можно качать и качать электроэнергию, выкручивая счётчик в большой минус, а потом, гораздо позже, в зимний период, возвращать себе обратно то, что так щедро отдавали летними деньками! Да и с тёмными летними ночами проблем нет – промышленная электросеть это гигантский аккумулятор, вечный и не имеющий потерь.
Но, к великому нашему сожалению, пока в России есть два фактора, которые сводят на нет всю эту идиллию :

1. У нас не разрешено частным лицам что-либо закачивать в сеть. На запреты можно было бы не обращать внимания – «пусть сначала поймают»! Только вот счётчиков таких (которые позволяют вычитать обратную энергию) больше практически нет. А есть те счётчики, которые вашу солнечную энергию с удовольствием примут, только вот показания не вычтут, а приплюсуют! Т.е. потребитель заплатит дважды – сначала за полученную энергию, а потом ещё и за отданную, за подаренную государству энергию, он заплатит как за потреблённую!

2. Если в Европе электричество практически не отключают, и там зачастую можно не иметь резервную систему на аккумуляторах, то в наших краях такие отключения и аварии не редкость. Поэтому АКБ жизненно необходимы не только для автономии, но и для резерва.
Может вы наивно полагаете, что сетевой инвертор (а он не работает с АКБ), в случае отключения промышленного 220 В будет выдавать свои 220, хотя бы пока светит Солнце? Нет! Ничего он не будет выдавать.
Его конструкция сделана так, что промышленное 220 В для него является опорным и ведущим. И, кроме того, по требованиям безопасности – когда ничего не подозревающий электрик отключит подачу сетевого 220 и, допустим, приступит к ремонту сети голыми руками, - чтобы его не убило, сетевой инвертор не должен при этом продолжать генерировать 220 В.
Таким образом, если электричество отключат, а будет установлен только сетевой инвертор с солнечными панелями, то вы останетесь без электричества! Огромные деньги затрачены, а автономного электроснабжения нет!
Надеемся теперь мы доказали справедливость, переиначенной поговорки – то, что «немцу» хорошо, - «русскому» смерть!?
И так будет, пока законы не изменят, пока электричество не перестанут отключать…
Что же предлагается вкупе с рекламирующимися в России сетевыми инверторами?
Ну, во-первых, лучшие мировые бренды выпустили так называемые гибридные инверторы, которые могут работать с аккумуляторами как обычно, а так же научились заряжать свои АКБ, если к выходу такого инвертора подключён сетевой инвертор (это умеет и МАП HYBRID и МАП DOMINATOR).


Т.е. получается странная конструкция, где вместо солнечного контроллера МРРТ, который заряжает АКБ, ставится сетевой инвертор со встроенным контроллером MPPT. Но ставится он не на АКБ, а на выход 220 В гибридного инвертора. Сетевой инвертор тогда сможет работать и при отключении в сети 220 В, ведь 220 В продолжит генерировать вместо сети гибридный инвертор от АКБ, а сетевой инвертор будет по прежнему думать, что это сетевое 220 В.
У солнечного контроллера MPPT и сетевого инвертора, КПД одинаков – 98%, но сетевой инвертор сразу подаёт энергию в сеть, в случае же солнечного контроллера с АКБ, есть ещё звено преобразования – гибридный инвертор, у которого КПД 96%.
Т.е. в последнем случае, общий КПД получается 0,98*0,96 = 0,94%
Обращаем внимание - систему можно настроить так, чтобы АКБ в процессе закачки солнечной энергии от солнечного контроллера не участвовали, т.е. энергия пойдёт транзитом, поэтому КПД аккумуляторов тут не причём. Например, наш солнечный контроллер ЭКО Энергия МРРТ 100 А 200 В, при подключении к системе на 48 В даёт до 5 кВт (и у него есть датчики токов, он может мгновенно выдать столько, сколько потребует инвертор, даже если АКБ заряжены, т. е. он не позволит им просесть ни на йоту).
Но является ли немного более низкое КПД (на 4%) аргументом за сетевой инвертор вместо солнечного контроллера? Нет, не является. Потому что цена сетевого инвертора в разы больше аналогичного по мощности солнечного контроллера. А эту потерю на КПД при желании можно легко перекрыть установкой лишней солнечной панели, что будет намного дешевле. Тут ещё необходимо пояснить, чем отличается гибридный аккумуляторный инвертор (а таковые сегодня выпускают только несколько именитых зарубежных компаний и мы, МикроАРТ) от обычного аккумуляторного инвертора.
Гибридный инвертор умеет синхронизироваться с промышленной сетью и подкачивать туда энергию от АКБ, причём как с солнечным контроллером, так и без оного (от энергии аккумуляторов). Т.е. он умеет делать то же, что и сетевой инвертор и даже больше – например, «умощнять» сеть при перегрузках. Т.е. он может приплюсовать к выделенной мощности сети мощность от АКБ и/или от солнечного контроллера.
Гибрид накладывает свой синус на синус сети с чуть большей амплитудой и может перехватывать на себя всю нагрузку или часть нагрузки. Если в меню установлена разрешение подкачки пока напряжение на 1 АКБ будет выше 12,7 В (что соответствует 100% заряда), то при отсутствии внешнего поступления энергии (например от Солнца), подкачка прекратится, и будет тогда далее всё питаться на 100% от сети. Появится Солнце - снова продолжится подкачка, настолько, насколько позволит эта энергия Солнца, или насколько израсходуют потребители. Но можно и разрешить некоторый разряд АКБ – это позволит подкачивать накопленное и вечером, правда ресурс АКБ тогда будет сокращаться.
Отдача во внешнюю сеть у гибридных инверторов по умолчанию запрещена, но её можно и включить.
Очень важно, что в настройках гибридных инверторов есть выбор - ограничиться ли подкачкой только в домашнюю сеть, или же разрешить ещё и подкачку во внешнюю сеть, как в сетевом инверторе. Таким образом, проблемы с отечественными сетями и счётчиками, у гибридных инверторов снимаются.
А как же быть с сетевыми инверторами? Пару лет назад была разработана приставка к сетевому инвертору, которая отслеживает направление тока и тоже не позволяет сетевому инвертору качать энергию во внешнюю сеть (по аналогии с гибридным инвертором), ограничиваясь лишь домашней сетью. Однако стоит такая приставка 20000 руб.
Так на что же «покупают» ушлые продавцы отечественных солнцелюбов, предлагая сетевые инвертора? Во-первых, на простоту - якобы купил солнечных панелей, купил сетевой инвертор, всё подключил и работает! Потом раздувают тему более высокого КПД, и недолговечных и дорогих АКБ, которые не надо покупать и ставить… Рассказывают про высокое напряжение и меньшие потери в проводах (тоже – не аргумент, - выше, мы писали, что у хороших солнечных МРРТ контроллеров, тоже должны быть высоковольтные входы).
Стали появляться и сетевые инверторы умеющие заряжать АКБ (разработано специально для России и отнюдь не именитыми фирмами). Они серьёзно проигрывают связке – гибридный инвертор + солнечный контроллер MPPT (здесь уже нет возможности расписывать и это).
Однако при внимательном рассмотрении «вооружённым взглядом»… Нет, мы пока ещё не «немцы», к сожалению… или к счастью!
Ну а теперь коротко разберём сообщение потенциального пользователя приведённое выше.
1. Он ошибся при сравнении КПД (т.к. КПД АКБ учитывать не надо). И он не понял, что эту небольшую разницу в КПД проще и дешевле компенсировать лишней солнечной панелью.
2. Если в России когда-нибудь разрешат отдавать энергию в промышленную сеть, то её сможет так же отдать туда и гибридный инвертор.
3. В трёхфазной системе трёхфазный сетевой инвертор SolarLake 8500TL-PM (мощность до 3 кВт на каждую фазу, цена под 125000 руб) не сможет перераспределять энергию по фазам – так он сделан. А три гибридных инвертора – смогут (кстати, цена МАП HYBRID 48 В 6 кВт 3 ф (его номинальная мощность 4 кВт) около 66000 руб за каждый).
Гибридными функциями обладает и наша новая модель инвертора, который можно соединять в трехфазные сети и в параллель для наращивания мощности – МАП DOMINATOR.
4. Без дополнительной приставки к сетевому инвертору, исключить подачу им энергию в промышленную сеть не получится, даже если СИ подключён к выходу гибридного инвертора.
5. Ставить ещё и дополнительный комплект системы с солнечным MPPT контроллером – верх неэкономичности.
Теперь посчитаем цену комплекта, о котором пишет богатый покупатель (пока без солнечных панелей и без АКБ, которые в его системе ставить всё равно необходимо).
Трёхфазный сетевой инвертор SolarLake 8500TL-PM - 125000 руб; приставка к сетевым инверторам – 20000 руб; три гибридных инвертора Кстендер XTM 4048 (кстати, номинальной мощностью всего по 4 кВт) – 540000 руб; один солнечный контроллер МРРТ – 30000 руб.
Итого, получаем общую стоимость 3-х фазной системы (с мощностью при пике солнца до 3 кВт на фазу, и мощностью всего 4 кВт на фазу при отключении промышленного электричества) - 715000 руб (и это без учёта СП и АКБ!).
Теперь сравним это с правильной системой на основе трёх гибридных инверторов и трёх солнечных контроллеров - МАП HYBRID 48 В 6 кВт 3 ф 198000 руб; три солнечных контроллера КЭС DOMINATOR (мощность до 5 кВт) – 90000 руб; дополнительная солнечная панель 200 Вт (для компенсации меньшего КПД) – 10000 руб.
Всего 300000 руб против 715000 руб. И при этом имеем распределение солнечной энергии по фазам в зависимости от потребности. А если выбрать МАП HYBRID 48 В 9 кВт 3Ф (с номиналом 6 кВт), то общая стоимость системы увеличилась бы совсем немного, до 325000 руб. Но номинальная отдача от солнца и при автономии увеличилась бы до 5 – 6 кВт на каждую фазу соответственно. Как говорится – почувствуйте разницу! «Богатые тоже плачут…»
Ну и напоследок остановимся на вопросе – а имеет ли вообще смысл завозить сетевые инверторы в Россию пока у нас такие несовершенные законы и такие ненадёжные электросети?

Сетевые инверторы в России правильно использовать если:

1. Можно будет, как за рубежом, отдавать энергию в сеть (т.е. тогда, когда это официально разрешат и появятся соответствующие счётчики, или если человек сам готов мудрить со старыми счётчиками «с колёсиками» - они вообще-то уже запрещены для установки…). Впрочем, в этом случае, можно поставить и гибридный инвертор.

2. Если речь идёт о мощной (мегаватты) солнечной электростанции, которая опять же отдаёт электроэнергию в сеть. Это разрешено только организациям, с соблюдением требований, и для больших мощностей солнечных панелей. Правда, покупать солнечное электричество наши энергосети будут по оптовой цене.
3. Если речь идёт о предприятии, которое потребляет энергию днём (тогда не обязательно и во внешнюю сеть её отдавать). Причем, мощность установленных сетевых инверторов с солнечными панелями должна быть заведомо ниже мощности потребления предприятия.
На наш взгляд для России пока это всё…
Во всех остальных случаях ставьте или обычный или гибридный инвертор с аккумуляторами. И это правильное решение.

Но в будущем… В будущем всё изменится. Как после первых монстроидальных компьютеров появились и персональные, так и в будущем, помимо крупных солнечных, гидро- и др. электростанций, у большинства людей будут и персональные «зелёные» солнечные электростанции. На каждом строении будут красоваться солнечные панели. И выработки их энергии будет хватать и для электроприборов, и для отопления, и даже для автомобилей (последние могут быть не обязательно электрическими, а, к примеру, водородными, только водород тот будет получаться электролизом воды). И тогда наша планета не задохнётся от углекислых газов, и не зачахнет от истощения природных ресурсов, и не отравится от загрязнения окружающей среды… Это будет светлое будущее!


Нет возможности подключить частный дом или коттедж к электросети? На этот случай компания «Источник Света» предлагает разумную и выгодную альтернативу – автономное электроснабжение. Мы оказываем услуги в сфере его проектирования и монтажа. В нашей компании работают первоклассные специалисты. Кроме того, в нашем распоряжении имеется превосходное современное оборудование. Все это позволяет выполнить работы максимально качественно и точно в установленный срок.

Преимущества систем автономного электроснабжения

Многие владельцы частных домов, не имея возможности подключиться к централизованной сети, используют мобильные генераторы. Такие устройства работают на газовом, бензиновом и дизельном топливе. Однако они обладают массой недостатков, которыми не обладают автономные системы электроснабжения:

    огромный расход топлива;

    слишком большой стартовый ток;

    быстрый износ двигателя.

Использовать подобные устройства крайне нерационально. Они выдают высокую мощность, которая совершенно не требуется для бытовых нужд даже в большом коттедже. Около 70% мощности попросту не расходуется. Автономное электроснабжение дома позволяет эффективно обеспечить дом электричеством и избежать лишних финансовых затрат.

Прокладка собственной электросети в новом поселке – это также не лучшее решение. Для этого необходимо установить трансформаторную подстанцию и проложить линии электропередач. Это требует огромных денег, оформления массы документов и много времени на согласование в контролирующих органах. В данном случае автономное электроснабжение загородного дома также является максимально простой и выгодной альтернативой.

Почему стоит обратиться к нам?

Компания «Источник Света» – это превосходные готовые решения. Есть масс причин выбрать именно нас. Вот некоторые из них:

    индивидуальный подход . Мы максимально точно оцениваем, какое количество электроэнергии нужно в Вашем коттедже и на участке. Смонтированная нашими специалистами система автономного электроснабжения загородного дома будет работать максимально эффективно и экономно;

    современные аккумуляторы. Они работают по принципу накопления и рационального расходования электроэнергии;

    Возможность исключить перегрузки сети. Этого удается добиться благодаря автоматическим запуску и остановке генератора. Он работает на дизельном топливе или бензине;

    стабильность электрического напряжения. Система автономного электроснабжения дома от компании «Источник Света» позволяет полностью исключить перепады мощности. Таким образом, Ваша сеть будет защищена от износа и аварий;

    полностью автоматизированная система управления. Генератор включается и выключается автоматически, а сеть работает безостановочно. Такая система делает жизнь в коттедже комфортной.

Как мы работаем?

Чтобы заказать монтаж оборудования, просто позвоните нам. Наши специалисты приедут к Вам, посоветуют наиболее приемлемый вариант, рассчитают стоимость материалов и работ. Если она Вас устроит, то мы заключим с Вами договор.

Работы выполняются строго в установленные сроки и согласно заранее составленному детальному проекту.

Кроме стандартных систем, мы устанавливаем автономное электроснабжение дома на солнечных батареях . Такие системы сегодня становятся все более востребованными у владельцев дачных домов и коттеджей.

Мы выполняем работы по разумным ценам. Компания «Источник Света» стремится к тому, чтобы каждый клиент остался доволен сотрудничеством с нами. Поэтому Вы можете быть уверены в высоком качестве и надежности устанавливаемых нами систем.